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We give a quantum information-theoretic description of
an ideal propagating CW laser field and reinterpret typical
quantum-optical experiments in light of this. In particular we
show that contrary to recent claims [T. Rudolph and B. C.
Sanders, Phys. Rev. Lett. 87, 077903 (2001)], a conventional
laser can be used for quantum teleportation with continu-
ous variables and for generating continuous-variable entangle-
ment. Optical coherence is not required, but phase coherence
is. We also show that coherent states play a priveleged role
in the description of laser light.

A laser produces a stable, unidirectional, more or less
monochromatic, possibly very intense light beam with
well-defined coherence and polarization characteristics.
These properties make a laser a wonderful tool for op-
tics experiments, but they are all classical properties in
the sense that they can be understood perfectly well us-
ing Maxwell’s equations. When is the quantum state of
a laser field important? As one might guess, quantum
information protocols provide examples. For instance, a
recent paper by Rudolph and Sanders [1] discusses an
instructive case where—depending upon what the quan-
tum state of a laser field is taken to be—a laser appar-
ently may or may not be used to demonstrate quantum
teleportation, and even may or may not be used to gen-
erate entangled quantum states. Their conclusion, how-
ever, is based on an application of the standard descrip-
tion of a laser field inside the laser cavity. We show here
that this is insufficient to properly interpret various quan-
tum information protocols involving lasers. As such, this
provides an opportunity to deepen our understanding of
what gives quantum information processing its power.

According to textbook laser theory—see for example
[2, ch. 17] and [3, ch. 12]—the quantum state of the field
inside a laser cavity in a steady state is well approxi-
mated by a mixed state diagonal in the photon-number
basis. The expectation value of the electric field in such a
state vanishes. On the other hand, many, if not all, stan-
dard optics experiments seem to be consistent with the
assumption that the laser field is in a coherent state. The
expectation value of the electric field in a coherent state
is nonzero and has a well-defined phase and amplitude.
It corresponds to a classical monochromatic light field,
a solution of the classical Maxwell equations. Mølmer
addressed the apparent contradiction between the two
different descriptions of a laser field in [4]. There, he
conjectured that no standard optics experiment has yet
proved the existence of a nonzero expectation value of the
electric field, and we agree with that. For instance, he
shows that a standard measurement of the phase between
two independent light beams emanating from cavities ini-

tially in number states leads to measurement records in-
distinguishable from those expected of coherent states.

The following identity is crucial for at least partly un-
derstanding the connection between coherent-state de-
scriptions and mixed-state descriptions:

e−|α|2
∑

n

|α|2n

n!
|n〉〈n| =

∫

dϕ

2π
|αeiϕ〉〈αeiϕ|. (1)

The left-hand side is a mixed state diagonal in the
photon-number basis with Poissonian photon-number
statistics. The right-hand side is a mixture of coherent
states with amplitude |α| and arbitrary phase. We use
the short-hand ρ|α| for this state. An experiment whose
outcome does not depend on the absolute phase ϕ cannot
distinguish between a pure-state |α〉 and a mixed-state
ρ|α| description. This observation, however, is still not
sufficient to fully understand certain complicated optical
experiments, as we will show by example.

If every standard optical experiment can be described
just as well by a mixture of coherent states as by a par-
ticular coherent state, why should one bother to find
out which description is correct? It turns out from a
quantum-information theoretic point of view it might be
very important to know if one has a pure coherent state
and not a mixed state. For example, in [1], Rudolph and
Sanders claim that teleportation with continuous vari-
ables is not possible with a mixed state, but requires a
true coherent state. The main reason for their conclusion
is that a mixture of two-mode squeezed states produced
by a laser in a mixed state does not contain any entan-
glement. This is an important observation. In fact, this
is a splendid example of why Eq. (1) does not completely
capture the essence of experiments with laser light. Here
we reexamine the question of the quantum state of a laser
field from a quantum-information theoretic perspective.
Our formulation clarifies why the coherent state plays a
privileged and unique role in the description of propagat-
ing laser fields, and how a conventional laser can produce
entanglement, even if it cannot actually produce a two-
mode squeezed state.

We consider an idealized situation where noise—in
particular phase diffusion—and transient effects are ne-
glected. This is sufficient for our purpose of showing
that optical coherence (that is, nonzero off-diagonal ma-
trix elements of the density matrix in the number-state
basis) is not required for teleportation with continuous
variables. In a separate paper [5] we will consider the
quantum state of a realistic laser beam as well as a more
detailed account of the idealized case.
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We model the laser as a one-sided cavity driven by a
constant force (a voltage or an external field) far above
threshold. As is well known from standard laser theory
[2,3] the steady-state density matrix of the field inside the
laser cavity is diagonal in the number-state basis with
Poissonian photon number statistics. For convenience
we first assume that the field is in a coherent state and
calculate the quantum state of the field outside the laser
cavity. Subsequently, using the identity (1), we adapt
that result to find the quantum state of a propagating
laser beam of a laser in the proper mixed state.

We employ standard input-output theory [3,6] to con-
nect the quantum field inside a laser cavity to its output
field. First, we separate the field modes into two parts.
A single-mode annihilation operator a describes the field
with frequency ω0 inside the cavity; continuous-mode op-
erators b(ω) describe modes with frequency ω outside the
cavity. We define input and output operators by

ain(t) =
−1√
2π

∫

dωe−iω(t−t0)b0(ω),

aout(t) =
1√
2π

∫

dωe−iω(t−t1)b1(ω), (2)

where t0 → −∞ is a time in the far past and t1 → ∞ is
a time in the far future. The operators b0(ω) and b1(ω)
are defined to be the Heisenberg operators b(ω) at times
t = t0 and t = t1, respectively. The input and output op-
erators satisfy the proper bosonic commutation relations

for continuous-mode operators, [ain,out(t), a
†
in,out(t

′)] =

δ(t − t′). The relation

ain(t) + aout(t) =
√

κa(t), (3)

with κ the decay rate of the cavity, may be regarded as
a boundary condition on the electric field. When the
input field is the vacuum and the field inside the cavity
is a coherent state |αe−iω0teiφ〉, then according to (3)
the output field is an eigenstate of aout with eigenvalue
β ≡ √

καe−iω0teiφ. Such a state is a continuous-mode
coherent state [7] and can be written in the Schrödinger
picture as

|{β(t)}〉 ≡ exp

(
∫

dω[β(ω)b†(ω) − β∗(ω)b(ω)]

)

|vac〉,

(4)

with |vac〉 the vacuum state and β(ω) the Fourier trans-
form of β(t). A continuous-mode coherent state can be
described alternatively as an infinite tensor product of
discrete-mode coherent states [7]. Let {Φi(t)} be a set of
functions satisfying the orthogonality and completeness
relations,

∫

dτΦi(τ)Φ∗
j (τ) = δij ,

∑

i

Φi(t)Φ
∗
i (t

′) = δ(t − t′). (5)

We may then define annihilation operators ci (satisfying
the correct bosonic commutation relations for discrete
operators) according to ci =

∫

dtΦ∗
i (t)aout(t). An eigen-

state of aout(t) with eigenvalue β(t) is also an eigenstate
of ci with eigenvalue αi =

∫

dtΦ∗
i (t)β(t). We now ap-

ply this formalism to describe laser light as a sequence of
packets of light, each with the same duration T . Let the
functions {Ψn(t)} be defined by

Ψn(t) =
exp(−iω0t)√

T
for

∣

∣

∣
t − z0

c
− nT

∣

∣

∣
<

T

2
,

= 0 otherwise. (6)

The label z0 refers to an arbitrarily chosen reference posi-
tion relative to which we partitioned the light beam into
equal pieces of length cT . This set of functions is orthogo-
nal and can be extended to form a complete set satisfying
(5). For a CW laser described by β(t) =

√
καe−iω0teiφ

we see that each part n of the light beam is in the same
coherent state with eigenvalue αn =

√
κTαeiφ ≡ α0, cor-

responding to the modes described by (6), and αi = 0 for
all other modes.

Now assuming that the field inside the laser cavity is
in fact a mixture ρ|α|, the quantum state of a sequence
of N parts corresponding to the set {Ψn} is thus

ρ̃N =

∫

dϕ

2π

(

|α0e
iϕ〉〈α0e

iϕ|
)⊗N

, (7)

where the integrand signifies an N -fold tensor product
over the separate packets.

This result [8] displays a privileged role for coherent
states in describing a propagating laser field: Although
the quantum state inside the laser is a mixed state diag-
onal in the number-state basis, the quantum state of the
output is not equal to a product of mixed states (ρ|α0|)

⊗N

(it would be for a pulsed laser). Rather it can be thought
of as a mixture of N copies of a coherent state, each copy
with the same “unknown” phase. The real question is, is
this the only such description? We would certainly not
want to commit the preferred ensemble fallacy (PEF)
that Rudolph and Sanders [1] rightly warn of.

The answer is given by the quantum de Finetti the-
orem [9,10]: Consider a source producing a sequence of
systems with the property that interchanging any two of
the systems will not change the joint probability distribu-
tion for the outcomes of measurements on the individu-
als [11]. Moreover, suppose this exchangeability property
holds even when the ensemble is extended by any number
of systems. The quantum de Finetti representation the-
orem specifies that the quantum state of any N systems
from such a source is necessarily of the form

ρ̃N =

∫

dρP (ρ)ρ⊗N , (8)

where P (ρ) is a probability distribution over the density
operators and dρ is a measure on that space. Most im-
portantly, this representation is unique up the behavior
of P (ρ) on a set of measure zero.
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Now contemplate performing a set of measurements on
the individual systems emanating from our source. The
probability distribution P (ρ) in (8) must be updated ac-
cording to standard Bayesian rules after the acquisition
of that information [12]. Indeed, if the measurements are
performed on a sufficiently large subset, and the measure-
ments form a complete set in the space of operators, then
the probability distribution will tend to a delta function
P (ρ) → δ(ρ− ρ0). Comparing the state of a propagating
laser field (7) with the general form (8) we see that a
complete set of measurements on part of the light ema-
nating from the laser will reduce the quantum state of the
rest of the light to a pure state, and this pure state will
necessarily be a coherent state. This shows the unique
role of coherent states in the description of laser light.

It is true that standard optics experiments have not
yet featured such complete measurements. For instance,
a complete set for the case at hand would be a measure-
ment of amplitude and absolute phase. However, recent
developments [13] may make it possible to compare the
phase of an optical light beam directly to the phase of
a microwave field. Using this technique the only fur-
ther measurement required for a complete measurement
is a measurement of the absolute phase of the microwave
field, which is possible electronically. This measurement
would create an optical coherent state from a standard
laser source for the first time. But as we will show in the
next section, such a measurement does not need to be
performed for most applications.

Let us now describe a typical optical experiment us-
ing (7) for a proper description of the quantum state of
a laser. Mølmer in [4] showed that the detection of a
phase difference between two (independent) light beams
need not imply that there is a well-defined phase differ-
ence before the measurement. In particular, he showed
that for light emanating from two cavities whose fields
are initially in number states (whose phase is completely
random), the standard setup to measure phase will in-
deed find a stable phase difference (though the value of
this phase will be random and different from experiment
to experiment). Within one experiment, it takes just a
few (about three) photon detections [4] to settle on a
particular value of the phase difference, after which the
counting rates of the detectors remain consistent with
that initial phase difference. In other words, the standard
phase measurement acts almost like a perfect von Neu-
mann measurement; the measurement will produce an
eigenvalue of the corresponding observable and the state
after the measurement can be described by an eigenstate
of the measured variable. Generalizing this observation
to continuously pumped CW lasers leads to the follow-
ing simple description. Initially we have two independent
laser beams A and B whose joint quantum state is de-
scribed by

ρ̃2N =

∫

dϕA

2π

(

|αAeiϕA〉〈αAeiϕA |
)⊗N

⊗
∫

dϕB

2π

(

|αBeiϕB 〉〈αBeiϕB |
)⊗N

(9)

if we divide each laser beam into N packages of constant
duration. If the first package of each beam is used to
measure a phase difference then the state of the rest of
the light beams will be reduced to

ρ̃2N−2 =

∫

dϕA

2π

(

|αAeiϕA〉〈αAeiϕA |
)⊗(N−1)

⊗
(

|αBei(φ0+ϕA)〉〈αBei(φ0+ϕA)|
)⊗(N−1)

, (10)

where we assumed the outcome of the phase measure-
ment was φ0 and approximated the measurement to be
sharp. The state (10) has the property that a subsequent
measurement of the phase difference will reproduce the
value φ0: This is a kind of “phase-locking without phase.”
Note this would certainly not be the case if the quantum
state of a laser were a product of identical mixed states
of the form (ρ|α|)

⊗N .
We now address the issue of teleportation with continu-

ous variables using a two-mode squeezed state [14]. Such
a state can be generated by splitting two squeezed states
on a 50-50 beamsplitter. The resulting state of the two
output ports is an entangled state. Denote a two-mode
squeezed state generated from a coherent state with am-
plitude αeiϕ by |T AB

α (ϕ)〉, where the superscripts A, B
refer to two distinct modes located in different laborato-
ries, say Alice’s and Bob’s. As shown in [1], the state

∫

dϕ

2π
|T AB

α (ϕ)〉〈T AB

α (ϕ)| (11)

contains no entanglement between A and B: Instead, it
simply denotes classical correlation between photon num-
bers for the two modes. Now, however, suppose that
some of the remaining laser light is supplied to Alice (as
for instance for the purpose of producing a local oscilla-
tor [14]). The overall quantum state between Alice and
Bob will then be of the form

∫

dϕ

2π
|T AB

α (ϕ)〉〈T AB

α (ϕ)| ⊗
(

|αA
′eiϕ〉〈αA

′eiϕ|
)⊗N

, (12)

where A′ indicates the further modes in Alice’s posses-
sion. Far from being an unentangled state, this state
has every bit as much entanglement as if the laser were
actually a pure coherent source. It is just that the en-
tanglement is in the form of distillable entanglement [15].
To see this, contemplate Alice doing a complete measure-
ment on the extra laser light in her lab. With it, she will
reduce the quantum state of modes A, B to a true two-
mode squeezed state. Since these measurements are local
(all measurements are performed on Alice’s modes A′),
it follows there must be distillable entanglement between
Alice’s and Bob’s modes. Although the claim in [1] that
the state (11) can be produced locally by Alice and Bob
is quite correct, the state (12) is entangled and cannot
be so produced.
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This shows that teleportation of continuous variables
is possible even with lasers in mixed states. The actual
procedure used in [14] required, as was noted in [1], both
Alice and Bob to use some of the light of the same laser
that generated the two-mode squeezed state to perform
homodyne detection. The fact that Bob shares laser light
with Alice does not imply however, that they share any
quantum channel over and above their original entangle-
ment. In principle all the light in Alice and Bob’s posses-
sion (both the shared two-mode squeezed state and the
light for their local oscillators) was sent to them before

any actual teleportation takes place.
Moreover, as pointed out in [16], such a shared resource

is necessary for any teleportation protocol, irrespective of
its physical implementation. For teleportation with con-
tinuous variables, Alice and Bob need to share a synchro-
nized clock; sharing some of the laser light is a practical
way of implementing this (though of course laser light is
more than simply a clock ). In contrast to [1], we do not
consider the presence of this resource, which acts as a
phase reference, as invalidating teleportation. An inde-
pendent party, Victor, who would like to verify Alice and
Bob’s teleportation skills, could use his own laser but has
to “phase-lock” it with Alice’s laser [17]. After all, Al-
ice’s claim is only that she can teleport a quantum state
of a particular mode: Victor is free to choose the state
to be teleported, but not the Hilbert space.

Finally, the teleportation procedure as a whole does
not depend on the value of the absolute phase ϕ. There-
fore, for teleportation to succeed, Alice does not even
have to do an absolute phase measurement to actually
distill the entanglement present in the state (12). Tele-
portation can be achieved without knowing the imagined
“unknown” phase ϕ arising in any PEF. In particular,
Alice and Bob can teleport a quantum state handed to
them by the independent third party Victor even if he is
able to generate a pure coherent state or a pure entan-
gled state. This is because the phases of both input and
output state are compared to one and the same phase
reference. Of course, in the actual experiment [14] no
coherent state was produced and thus no coherent states
were teleported. Instead it is the action of a general dis-
placement operator (which acts on a coherent state as
Dβ |α〉 = exp(iIm(βα∗))|α + β〉) that is teleported.

In conclusion, viewing the laser beam of a CW laser as
a sequence of N quantum systems leads to the following
result: The quantum state of a laser beam is a mixture
of N copies of identical pure coherent states. Such a
state is very different from N copies of identical mixed
states (be they mixtures of number states or of coherent
states). One consequence is that appropriate measure-
ments performed on part of a laser beam will reduce the
quantum state of the rest of the laser beam to a pure
coherent state. Such measurements seem in fact possible
with present-day technology [13], and thus an optical co-
herent state may in fact be generated. No sophisticated
measurement on the laser medium [4] need be contem-
plated to carry this out.

Most importantly, this description allows us to prop-
erly assess quantum communication protocols that rely
on lasers. In particular we find that teleportation with
continuous variables is possible with conventional lasers
without actually having to reduce the quantum state of
a laser to a coherent state.

We thank Terry Rudolph and Barry Sanders for send-
ing us a copy of their paper, and Klaus Mølmer and the
referees for extended comments.
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