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We define a new quantity called refbit, which allows one to quantify the resource of sharing a ref-
erence frame in quantum communication protocols. By considering both asymptotic and nonasymp-
totic protocols we find relations between refbits and other communication resources. We also consider
the same resources in encoded, reference-frame independent, form. This allows one to rephrase and
unify previous work on phase references, reference frames, and superselection rules.

I. INTRODUCTION

The roles that reference frames play in communica-
tion protocols have attracted a lot of attention in recent
times. Many aspects related to the transmission of a di-
rection in space by quantum particles have been analyzed
in detail, see for instance Refs. [1]. It was also pointed
out that both classical and quantum communication are
possible without sharing a reference frame by encoding
information in particular invariant subspaces [2]. More-
over, several papers have discussed the relation between
reference frames (or more generally, phase references) and
super-selection rules, and their role in quantum commu-
nication [3, 4]. Finally, sharing a secret reference frame
as a cryptographic resource was analyzed in [5].

In most of the work mentioned above a reference frame
is assumed to be either fully present or fully absent. The
present paper attempts to quantify the partial presence
of a phase reference. Ref. [3], too, quantifies a resource
that can substitute for a phase reference. That quantity
applies to one case of two considered in the present pa-
per (see Section III), and describes in fact two different
resources, the ebit and the refbit, which are similar in cer-
tain contexts but different in others. The ebit and other
resources, such as a unit of coherent communication, a
cobit, were defined and analyzed in Ref. [6], but under
the implicit assumption that the communicating parties
share a reference frame. Here we modify those definitions
to explicitly take into account the absence of a shared
reference frame, and in addition we introduce a unit of
sharing a phase reference, a refbit. The formalism pre-
sented here is an alternative, and hopefully useful, way
of formulating the role reference frames play in commu-
nication protocols. Indeed, by following the methods of
[6] we can rephrase and unify results from several previ-
ous papers on reference frames and superselection rules,
such as [3] and [7] (see also [8]). For example, we will in-
troduce encoded, phase-reference independent, versions
of the resources, such as an Ebit, which we will always
denote by capitalizing the word used for the unencoded
resource. The relations between ebits and Ebits clarify
the various measures of entanglement used in [7], and

also how quantum data hiding [3] in the presence of su-
perselection rules works, thus unifying those two results.
The encoding used is inspired by that of Ref. [2], but is
different as our communication model, presented below,
is different.

Since notation can be confusing as various terms, such
as qubits and ebits, are used in different contexts with
different meanings, we start out by clarifying the notation
used in this paper.

II. NOTATION

A two-level atom or a polarized photon can act as a
physical qubit. On the other hand, the qubit used in this
paper (and in Ref. [6]) is a communication resource, and
is equivalent to sending a physical qubit over a noiseless
channel (this will be made more precise in Section IV).
In order to distinguish the two types of “qubits”, we will
always write the communication resource qubit in italic,
the other type of “qubit” will always be prefaced by the
word “physical” and written in roman.

Somewhat similarly, the ebit is known as a unit of en-
tanglement. It can be used to quantify the amount of
entanglement in any bipartite state. The ebit used in
this paper (and also in [6]) is, again, a communication
resource. For example, when Alice and Bob are engaged
in some quantum communication protocol, then an ebit
is the resource of Alice and Bob sharing an entangled
state of a particular form. That entangled state contains
one ebit of entanglement.

Finally, the following notation should be clear by now:
a classical bit is a unit of classical information, the cbit in
the present paper is a communication resource and corre-
sponds to sending a classical bit over a noiseless channel.

III. COMMUNICATION MODEL

Assume that Alice and Bob agree on the definition of
the qubit states |0〉 and |1〉, but not on the definition of
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the phase φ in superpositions of the form

sin α|0〉 + cosαeiφ|1〉.

For them to agree on the value of φ they would have to
share a phase reference.

This model corresponds to Alice and Bob communi-
cating with either photon number states, with |0〉 and
|1〉 denoting states containing no and one photon in one
particular mode [13], or with polarized single photons,
with |0〉 and |1〉 denoting left-hand and right-hand cir-
cular polarization. The phase references needed in these
two cases are a synchronized clock and a spatial reference
frame, respectively [14].

Both Alice and Bob are assumed to have local phase
references at their disposal, which define local phases φA

and φB , respectively. It is important to note that these
two phases in turn are defined only with respect to an-
other, fictituous phase reference, that we may assume to
be in the hands of a third party. For instance, in the
context of cryptographic protocols we may assume this
third party is an eavesdropper. Neither Alice nor Bob
are aware of the values of φA and φB . Thus, the third
party reference frame has a privileged role.

Those who believe that superselection rules might for-
bid coherent superpositions of |0〉 and |1〉 [15] may prefer
the following, alternative, cumbersome, but in the end
equivalent, formulation: The fictituous third party has a
state of the form

∫

dφ

2π
((|0〉 + exp(iφ)|1〉)(〈0| + exp(−iφ)〈1|))⊗N ,

with N → ∞. In spite of appearances this state contains
no coherent superpositions of |0〉 and |1〉. Now whenever
a phase between |0〉 and |1〉 appears in some equation this
phase is understood to be relative to the dummy phase
φ. For example, the equivalent of ”Alice having a state
|0〉A + exp(iφA)|1〉A” is then that the joint state of the
third party and Alice’s qubit is

∫

dφ

2π
((|0〉 + exp(iφ)|1〉)(〈0| + exp(−iφ)〈1|))⊗N ⊗

(|0〉 + exp(i(φ + φA))|1〉)(〈0| + exp(−i(φ + φA))〈1|).

One can define in a similar way what it means for Alice
and Bob to have their own phase references: large collec-
tions of physical qubits with phases φ + φA or φ + φB,
respectively.

In any case, Alice and Bob can perform any local op-
eration they like, except that there will always be extra
phase factors exp(iφA) or exp(iφB) appearing in front
of the states |1〉A and |1〉B. For example, consider the
Hadamard transformation. When Alice performs her ver-
sion of that transformation, she actually performs HA:

|0〉 7→ |0〉 + exp(iφA)|1〉
|1〉 7→ exp(−iφA)|0〉 + |1〉, (1)

as described from the third-party reference frame. Simi-
larly, when she performs her local version of a controlled-
NOT, she actually performs CNOTA:

|0〉|0〉 7→ |0〉|0〉
|0〉|1〉 7→ |0〉|1〉
|1〉|0〉 7→ exp(iφA)|1〉|1〉
|1〉|1〉 7→ exp(−iφA)|1〉|0〉. (2)

The three Pauli operations become

ZA = Z =

(

1 0
0 −1

)

XA =

(

0 exp(iφA)
exp(−iφA) 0

)

YA =

(

0 exp(iφA)
− exp(−iφA) 0

)

(3)

If we picture a (Bloch) sphere representing a qubit, then
Alice and Bob agree on the north and south poles, they
agree on the latitude of all points on the sphere, but not
on the longitude. They can perfectly define rotations
around the polar axis, but not around any other rotation
axis.

IV. DEFINITIONS OF RESOURCES

In order to define various resources such as ebits and
qubits, we follow Ref. [6], but with the appropriate modi-
fications to reflect the assumptions of the communication
model defined in the preceding Section. Ref. [6] implic-
itly assumed Alice and Bob do share a phase reference.
The first three definitions given below refer to resources
that are sent from one party to the other (and in the
definitions we always consider Alice the sender and Bob
the receiver). The last three definitions define resources
shared by Alice and Bob.

Before we give the definitions it is perhaps useful to
point out the following. Under the assumption of a
shared reference frame the definition of an ebit (as in
[6]), for example, includes a more general class of entan-
gled states than the ones considered below. Moreover,
entangled states are more powerful resources in the pres-
ence of a reference frame. Indeed, that was one point of
Refs. [3] and [7]. The ebit as defined in the present paper
is less powerful, but the Ebit defined later on is much
more similar to the quantity defined in [6].

1. The most powerful resource is a qubit, that is, one
use of a perfect quantum communication channel.
It is the ability to send any physical qubit from
Alice to Bob, i.e.,

a|0〉A + b|1〉A 7→ a|0〉B + b|1〉B.

Here the coefficient b does not necessarily contain
an explicit phase factor exp(iφA) as the physical
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qubit may have been handed to Alice by a third
party (this may be relevant in a teleportation pro-
tocol, for instance).

2. A cobit is the ability to perform

|0〉A 7→ |0〉A|0〉B,

|1〉A 7→ exp(iφA)|1〉A|1〉B.

Here the phase factor exp(iφA) does always appear.
This definition is basis-dependent, as it singles out
the |0〉, |1〉 basis. This basis dependence is neces-
sary as the cobit is defined by a cloning-like opera-
tion.

3. A cbit, corresponds to one use of a classical com-
munication channel, which can be described by the
process

|0〉A 7→ |0〉E |0〉B,

|1〉A 7→ exp(iφA)|1〉E |1〉B,

where E refers to the environment, assumed unob-
servable by either Alice or Bob, but possibly ob-
servable by an eavesdropper. In any protocol in-
volving cbits, we thus assume that Alice and Bob
trace out the environment.

4. The following definition of an ebit is chosen such
that both a single qubit and a single cobit can be
used to generate an ebit, a bipartite entangled state
of a particular form, shared by Alice and Bob: Al-
ice, starting out with the state |0〉 ± exp(iφA)|1〉,
can use a cobit to produce

|0〉A|0〉B ± exp(2iφA)|1〉A|1〉B.

By means of a local operation (a bit flip XA) Alice
can convert this state to

|1〉A|0〉B ± |0〉A|1〉B,

apart from an irrelevant overall phase factor. The
latter state can also directly be produced by ei-
ther Alice or Bob by creating that state locally and
subsequently using a qubit. Starting from an ebit
as above, Bob, too, can apply local operations and
produce

exp(2iφA)|1〉A|0〉B ± exp(2iφB)|0〉A|1〉B.

Since all these entangled states are connected by
local operations, these are all equivalent definitions
of an ebit.

5. A refbit is, like an ebit, a shared resource between
Alice and Bob. It is defined as Alice and Bob shar-
ing a (product) state of the form

(|0〉A + exp(iφA)|1〉A)(|0〉B + exp(iφA)|1〉B),

or equivalently

(|0〉A + exp(iφB)|1〉A)(|0〉B + exp(iφB)|1〉B).

This definition is such that Alice can use a qubit
to establish a refbit. Since neither Alice nor Bob
are aware of any of the phases appearing in the
definition of a refbit, they cannot establish a refbit
by local means, in spite of it being a product state.

6. For later use, we also define a refbit(2). Again, this
is a shared resource between Alice and Bob. It is
defined as Alice and Bob sharing a state of the form

(|00〉A + exp(2iφA)|11〉A)(|00〉B + exp(2iφA)|11〉B).

One can probabilistically generate a refbit(2) from
2 refbits (succeeding with 50% chance), but not the
other way around.

In addition to the above resources, which do not use any
coding, we can also define encoded versions of the same
resources. In particular, Alice and Bob can communicate
without sharing a reference frame using the encodings
discussed in [2]. That paper actually discusses a slightly
different situation where Alice and Bob do not even agree
on the definitions of |0〉 and |1〉. In that case, which would
correspond to the scenario of Alice and Bob using massive
spin-1/2 particles to communicate, one needs 4 physical
qubits to encode one logical qubit. On the other hand,
within the present communication model, Alice and Bob
can encode in the following reference-frame independent
way, using just two physical qubits to encode one logical
qubit. For example, they could use

|0〉L = |0〉|1〉,
|1〉L = |1〉|0〉. (4)

Alice can encode a logical qubit by performing

|0〉(a|0〉 + b exp(iφA)|1〉) 7→ exp(iφA)(a|0〉L + b|1〉L). (5)

We denote resources that make use of this type of encod-
ing by capitalizing the corresponding unit. So we have
Qubits, Cbits, Ebits, and Cobits, but Refbits do not make
any sense.

V. RELATIONS BETWEEN RESOURCES

With these definitions we can write down simple rela-
tions of the form X ≥ Y , following [6], which mean that
the resource X can be used to simulate resource Y (and
X = Y if and only if both X ≥ Y and Y ≥ X).

We consider first coherent protocols, in which the envi-
ronment, which appears in the definition of a cbit, plays
no role. Subsequently, we consider incoherent protocols
that (implicitly or explicitly) yield or use cbits.
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A. Coherent protocols

With the above definitions it is straightforward to ob-
tain protocols that achieve

1 qubit ≥ 1 ebit,

1 qubit ≥ 1 cobit,

1 cobit ≥ 1 ebit,

1 qubit ≥ 1 refbit,

1 qubit + 1 ebit ≥ 1 refbit(2). (6)

We now consider several slightly more complicated pro-
tocols that convert one type of resource into another.

1. Protocol C1

First, consider a protocol that is simpler than telepor-
tation, yet achieves the same resource-wise. Alice is given
a physical qubit in the state (possibly unknown to her)
a|0〉A + b|1〉A. Using a cobit, she accomplishes

a|0〉A + b|1〉A 7→ a|0〉A|0〉B + b exp(iφA)|1〉A|1〉B.

Then on her half of this state plus an ancilla in state |0〉
she performs the following 2-qubit operation

|0〉|+〉 7→ |0〉|+〉,
|0〉|−〉 7→ exp(iφA)|1〉|−〉,

where |±〉 = |0〉 ± exp(iφA)|1〉. This leads to the state

|0〉A1|+〉A(a|0〉B + b|1〉B) +

exp(iφA)|1〉A1|−〉A(a|0〉B − b|1〉B).

Subsequently, Alice uses another cobit to copy her ancilla
A1 into an ancilla B1 at Bob’s site. He then performs
the operation

|0〉|1〉 7→ |0〉|1〉,
|1〉|1〉 7→ −|1〉|1〉,

to end up with the state

(|0〉A1|+〉A|0〉B1 + exp(iφA)|1〉A1|−〉A|1〉B1)

⊗(a|0〉B + b|1〉B).

The first term can be converted into one ebit by Alice,
the second term shows Alice has managed to simulate a
qubit. Thus, this protocol achieves

2 cobits ≥ 1 qubit + 1 ebit. (7)

First we note Alice and Bob do not have to share a refer-
ence frame or any refbits to achieve this. Second we note
this relation holds without using a catalyst, thus slightly
improving Eq. (4) in [6], which was derived there using
an extra ebit on both sides of the relation.

2. Protocol C2

A similar protocol starts with Alice producing

a|0〉A + b exp(iφA)|1〉A.

Using a cobit Alice and Bob share the state

a|0〉A|0〉B + b exp(2iφA)|1〉A|1〉B.

Then Alice flips her physical qubit to get

a|1〉A|0〉B + b|0〉A|1〉B.

apart from an irrelevant overall phase factor exp(iφA).
Sending her physical qubit to Bob (and thus using one
qubit) leaves him with an encoded Qubit. Thus, we find

1 cobit + 1 qubit ≥ 1 Qubit. (8)

3. Protocol C3

By starting out with a refbit, |0〉 + exp(iφB)|1〉, Alice
can use a cobit to produce

|0〉A|0〉B + exp(iφA + iφB)|1〉A|1〉B,

which by local transformations can be transformed into
an Ebit. Hence

1 cobit + 1 refbit ≥ 1 Ebit. (9)

Note that starting with just one ebit, Alice and Bob can
generate by local operations the state

exp(iφA)|0〉L|1〉L + exp(iφB)|1〉L|0〉L

but that state contains both φA and φB , and so is not a
reference-frame invariant state, and hence not an Ebit.

4. Protocol C4

Instead of using a refbit and a cobit to obtain an Ebit,
it is easy to check that Alice and Bob could also start
out with an ebit and then use a cobit to end up with an
Ebit, thus leading to

1 cobit + 1 ebit ≥ 1 Ebit. (10)

5. Superdense coding

Finally, consider the coherent version of superdense
coding. Alice and Bob start with an ebit, say |1〉A|0〉B +
|0〉A|1〉B. Alice, moreover, has two ancilla physical qubits
in a state |a1〉|a2〉, where a1 and a2 take on the values 0
or 1. She then performs the following 3-qubit operation,
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conditioned on the state of the two ancilla’s (the first two
kets in the equations below)

|1〉|0〉|0〉 7→ |1〉|0〉|0〉
|1〉|0〉|1〉 7→ |1〉|0〉|1〉
|0〉|1〉|0〉 7→ |0〉|1〉|0〉
|0〉|1〉|1〉 7→ −|0〉|1〉|1〉
|0〉|0〉|0〉 7→ exp(iφA)|0〉|0〉|1〉
|0〉|0〉|1〉 7→ exp(−iφA)|0〉|0〉|0〉
|1〉|1〉|0〉 7→ − exp(iφA)|1〉|1〉|1〉
|1〉|1〉|1〉 7→ exp(−iφA)|1〉|1〉|0〉

Subsequently, Alice uses one qubit to send the physical
qubit A to Bob. In the four possible cases Alice and Bob
end up with

|1〉|0〉 ⊗ (|1〉|0〉 + |0〉|1〉)

|0〉|1〉 ⊗ (−|1〉|0〉 + |0〉|1〉)

|0〉|0〉 ⊗ (exp(−iφA)|0〉|0〉 + exp(iφA)|1〉|1〉)

|1〉|1〉 ⊗ (exp(−iφA)|0〉|0〉 − exp(iφA)|1〉|1〉)

The last two entangled states are indistinguishable to
Bob. More precisely, both are equal mixtures of |0〉|0〉
and |1〉|1〉 to him. One of the two classical bits a1 and a2,
therefore, cannot be sent coherently without a reference
frame, but the other bit can. Thus, by starting off her
ancilla bits in only two possible states, corresponding to
|0〉L or |1〉L, Alice and Bob achieve

1 qubit + 1 ebit ≥ 1 Cobit. (11)

6. Comparing encoded and unencoded resources

Performing superdense coding and protocol C1 with
encoded resources immediately gives us

1 Qubit + 1 Ebit = 2 Cobits. (12)

These encoded resources can be obtained from unencoded
resources, by the results obtained above. In particular,
the left-hand side, a Qubit and an Ebit, can be obtained
from 2 cobits, 1 qubit, and 1 ebit. The right-hand side can
indeed be obtained from the same unencoded resources.
Namely, the two cobits can be converted into 1 qubit and 1
ebit. Subsequently, 2 qubits and 2 ebits can be converted
into 2 Cobits.

Obviously, we can also use 2 cobits directly to yield one
Cobit. From this and Eqs (8) and (10) one sees that a co-
bit can always be used to convert an unencoded resource,
a qubit, an ebit, and a cobit, into the corresponding en-
coded form.

We also note that unencoded resources cannot be ob-
tained from just encoded resources. The reason is sim-
ply that unencoded resources contain formation about
Alice’s and Bob’s local reference frames, while encoded
resources do not (which is the whole point of encoding).

B. Incoherent protocols

1. Superdense coding

Returning to superdense coding, we note that Alice
could decide to start off her ancilla bits in only three pos-
sible initial states, 01, 10 or 00, with equal probabilities.
In the incoherent version she thus succeeds in sending
log2(3) classical bits to Bob, rather than 2 when they
share a reference frame. Moreover, in the case that Alice
chose 00, Bob actually ends up with a state in his posses-
sion that still contains the phase φA, |00〉+exp(2iφA)|11〉.
Clearly, this can be converted into a refbit(2). Thus, Al-
ice and Bob actually achieve

1 qubit + 1 ebit ≥ log2(3) cbits + 1/3 refbit(2). (13)

Now, with one refbit Bob cannot get more cbits out of this
protocol, basically since he has to compensate for extra
phases of 2φA appearing. But with two refbits he can do
a better job of decoding in the classical case, and, more-
over, can sometimes save his refbits. In particular, Bob
has a probability P = 1/4 to unambiguously discriminate
between the two states

(|00〉 ± exp(2iφA)|11〉) ⊗ (|0〉 + exp(iφA)|1〉)⊗2.

(There are two ways of obtaining the probability P =
1/4: either we write down mixtures over the unknown
phase φA for the two possible states and calculate the
unambiguous-state discrimination probability for two
mixed states, or we let Bob project onto subspaces with
equal phase factors exp(inφA), where n = 0, 1, 2, 3, 4, and
subsequently let him perform unambiguous state discrim-
ination between the projections of the two states within
those subspaces.) Hence, if Alice chooses her two classi-
cal bits as either 01 or 10 with probability p/2 each, and
as 00 or 11 with probability (1 − p)/2 each, then they
achieve

1 qubit + 1 ebit + 2 refbits ≥
(H(p) + (1 + 3p)/4) cbits + 2p refbits, (14)

with H(p) the Shannon entropy H(p) = −p log2 p− (1−
p) log2(1−p). Note that in this case no further resources
are left over, in particular, there is no refbit(2) at the end
of the protocol. Choosing p = 2/3 we gain 1/12 of a cbit
compared to (13) while using up 2/3 refbits:

1 qubit + 1 ebit + 2 refbits ≥
(log2 3 + 1/12) cbits + 4/3 refbits. (15)
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The amount of communicated cbits using two refbits is
maximized to 1.6732 cbits achieved for p = p0 ≈ 0.627.

Instead of using two refbits, it is better for Bob to
use one refbit(2). It is easy to verify that Bob now can
succeed in unambiguously distinguishing the two states

(|00〉 ± exp(2iφA)|11〉) ⊗ (|00〉 + exp(2iφA))|11〉

with probability P = 1/2. This then yields

1 qubit + 1 ebit + 1 refbit(2) ≥
(H(p) + (p + 1)/2) cbits + p refbits(2). (16)

We can also calculate what Alice and Bob can gain from
sharing many refbits. The important determining fac-
tor here is the probability PN for Bob to unambiguously
discriminate between the states

(|00〉 ± exp(2iφA)|11〉) ⊗ (|0〉 + exp(iφA)|1〉)⊗N ,

when Alice and Bob share N refbits. It is straightforward
to find for even values of N

1 − PN =

(

N
N/2

)

+

(

N
N/2 + 1

)

2N
(17)

while for odd values of N one finds the same result as for
N−1. That is, a single extra refbit never helps to improve
upon the case with an even number of refbits. So we find
that PN approaches unity only slowly. Asymptotically
one has

PN ≈ 1 − 4√
2πN

.

In terms of PN and p, superdense coding leads to the
following trade-off relation

1 qubit + 1 ebit + N refbits ≥
(H(p) + (1 − PN )p + PN ) cbits + pN refbits. (18)

As expected, in the limit of N → ∞ one recovers stan-
dard superdense coding in the presence of a shared ref-
erence frame: in particular, one uses p = 1/2 to send 2
cbits, and one saves half of the refbits.

2. Teleportation

The coherent version of teleporation works only if Alice
and Bob share a reference frame or use phase-invariant
encoding. However, it is still interesting to consider the
resources needed for the incoherent (standard) version of
teleportation. Without a reference frame teleportation
only succeeds for two out of four outcomes of Alice’s Bell
measurement, thus leading to

2 cbits + 1 ebit ≥ 1/2 qubit. (19)

Here we are interested only in perfect fidelity teleporta-
tion, and in only half of the cases do they succeed in this

endeavor (and they know when they succeed and when
not). When Alice and Bob share refbits, the probabil-
ity to succeed in perfect teleportation increases. Namely,
in the cases where Alice gets a “wrong” measurement
outcome, Bob can still try to project onto the correct
subspace. The probability to succeed turns out to be the
same probability PN as we encountered before when we
considered superdense coding. Thus we find the duality
between the two protocols persists in the absence of a ref-
erence frame and sharing an arbitrary number of refbits.
Here we get (for even numbers of refbits)

2 cbits+1 ebit+2N refbits ≥ (P2N+1)/2 qubit+N refbits.
(20)

For example, with 2 refbits one succeeds in perfect tele-
portation with probability 5/8, but, as before, when us-
ing a refbit(2), the chances increase, and one gets

2 cbits + 1 ebit + 1 refbit(2) ≥ 3/4 qubit + 1/2 refbit(2).
(21)

In the limit N → ∞ one recovers the results for telepor-
tation in the presence of a shared reference frame, and
again one saves half of the refbits.

3. Converting ebits to Ebits

In this subsection we consider some more protocols
that convert unencoded into encoded resources. These
protocols in fact use the present formalism to reformu-
late and unify results obtained before in Refs. [3] and
[7]. Starting out with 2 ebits, (|0〉|1〉+ |1〉|0〉)⊗2, Bob can
perform a projective measurement onto subspaces with
even or odd numbers of |1〉 appearing in his two-qubit
space. This leads with probability 1/2 to an Ebit, and
with probability 1/2 to a state that one would normally
called entangled, but which is not equivalent to an Ebit.
Thus, we get

2 ebits ≥ 1/2 Ebit. (22)

This relation in fact reexpresses the statement of Eq. (5)
in the second paper of Ref. [7], namely, that the amount
of entanglement EP , for 2 ebits is 1/2, although it is zero
for 1 ebit. We can achieve the same conversion with a
refbit:

1 ebit + 1 refbit ≥ 1/2 Ebit. (23)

Thus for the purpose of extracting ”useful” entanglement
out of an ebit, another ebit or a refbit achieve the same.
Both relations also express how data hiding works in the
presence of superselection rules. Namely, an ebit can be
used to hide one classical bit, by encoding it in one of
two states |0〉A|1〉B ± |1〉A|0〉B. However, neither Alice
nor Bob can locally distinguish these two states at all.
But by using either a refbit or a second ebit, they can
convert it with 50% probability to one of two different
forms of an Ebit. Since the latter is in encoded form, the
classical bit can be retrieved.
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We might as well remark here that although refbits and
ebits are similar for certain purposes (see, for example,
[3]), they are definitely not the same. In particular, a
refbit cannot be converted into an ebit by local operations
and classical communication, but one can achieve the
converse by remote state preparation,

1 ebit + 1 cbit ≥ 1 refbit. (24)

Also, whereas an ebit can be converted into a secret
shared random classical bit, a refbit cannot.

Alice and Bob can reach the optimum conversion of 1
ebit to 1 Ebit in the limit of infinitely many refbits. Bob
projects onto subspaces with a fixed number of states
|1〉 on his (N + 1) physical qubits (one for the ebit, the
others from the N refbits he shares with Alice). The
outcomes do not always lead to maximally entangled en-
coded states, but they do always lead to encoded states.
The average entanglement they gain with 2 refbits, for
example, is

1 ebit + 2 refbits ≥ (3 log2(3)/4 − 1/2)Ebit. (25)

By using a large number N of refbits, they approach a
full Ebit, according to

1 ebit + N refbits ≥ (1 − 1/(2N))Ebit. (26)

C. Asymptotic relations

So far we only considered single-shot protocols, in
which a single use of certain resources is analyzed, but
one may also be interested in the results that can be
obtained with many uses of a given resource. For exam-
ple, let us consider incoherent superdense coding. With-
out refbits, Alice and Bob in a single-shot protocol can
achieve

1 qubit + 1 ebit ≥ log2(3) cbits + 1/3 refbit(2). (27)

They achieve this if Alice applies one of three operations
to her physical qubit, I, Z, XA. But if they use 2 qubits
and 2 ebits the same protocol can yield slightly more than
twice the right-hand side. For instance, suppose Alice
still applies one of the same three operations I, Z, XA

on the first physical qubit, with probability 1/3 each.
On her second physical qubit, she also applies I or Z
with probability 1/3 each, but she applies now either XA

or YA with probability 1/6 each. Now the combination

X
(1)
A X

(2)
A can be unambiguously distinguished by Bob

from X
(1)
A Y

(2)
A with probability P=1/2. Thus, they gain

1/18th of a classical bit, but end up with only 2/9th of
a refbit(2). Thus

2 qubits + 2 ebits ≥ (log2(3) +
1

18
) cbits + 2/9 refbit(2).

(28)
The protocol above is just to illustrate that Alice and Bob
can gain classical bits, it is not optimized for anything

in particular. It does illustrate how precious Hilbert
space is wasted. It is much better indeed to extend the
phase-reference-invariant encoding used above to higher
dimensions. It is trivial to accomplish this: for a fixed
number N of physical qubits we choose states with some
fixed number N1 of 1s, where N1 ≈ [N/2]. The dimen-
sion of the subspace spanned by states of that form is
N !/(N1!(N−N1)!). For large N this number approaches

N !

N1!(N − N1)!
≈ 2N

√

πN/2
.

That means we can encode N − log2(πN/2) encoded
Qubits into N qubits. Asymptotically, therefore, we will
have

1 qubit ≥ 1 Qubit (a), (29)

with (a) denoting the relation holds asymptotically for
many copies of the resources. Similarly, suppose Alice
and Bob start out with a large number N of ebits. Alice
and Bob can do a projective measurement on subspaces
spanned by states with a fixed number of 1s. Both will
find with high probability a subspace with about [N/2]
1s. Thus, they end up with high probability (approaching
unity) N − log2(πN/2) Ebits. Thus,

1 ebit ≥ 1 Ebit (a). (30)

This relation in fact reexpresses a fact analyzed in [3].
As a result, superdense coding leads to

1 qubit + 1 ebit ≥ 2 cbits (a). (31)

VI. SUMMARY AND DISCUSSION

We presented a formalism for describing resources in
quantum communication that extends that of Ref. [6]
to allow for the absence of shared reference frames. It
naturally leads to the definition of a new resource, the
refbit, and to modifications of the definitions of known
resources, such as the ebit and the cobit.

The formalism can be used to describe both known the-
oretical results and practical experiments. For example,
the relation

2 ebits ≥ 1/2 Ebit (32)

has the same meaning as the statement in [7] that the
entanglement EP in two copies of the state |0〉|1〉+ |1〉|0〉
is 1/2. That is, in the presence of a U(1)-superselection
rule one needs two copies of that state in order to gen-
erate accessible entanglement with probability 1/2. It in
fact also expresses the fact that quantum data hiding in
the presence of superselection rules [3] allows one to hide
one classical bit of information in an ebit, which can be
unlocked with probability 1/2 if another ebit is used as a
resource.
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To give a practical example described by our formal-
ism, consider today’s quantum key distribution protocols.
Probably the best method to encode quantum informa-
tion is in the relative phase of weak coherent states. That
is, in the standard implementation of the BB84 protocol
Alice sends Bob one of four states

|α exp(iφA)〉|α exp(i(φA + φk))〉 k = 1 . . . 4, (33)

where φk = kπ/2. Here |α〉 denotes a coherent state with
amplitude α, where typically |α|2 ≈ 0.1. Even if polar-
ization is used to encode information in weak coherent
states, one can still rewrite the states used in the form
(33) [10]. Clearly, the information is encoded in a way
that does not depend on the value of φA. In other words,
this is a phase-reference independent way of encoding,
and one could say that the BB84 protocol makes use of
Qubits.

On the other hand, one could imagine the state
|α exp(iφA)〉 shared in advance between Alice and Bob,
and in that case this is akin to sharing a refbit. It is not
quite the same, as to lowest order in |α| the shared state
is |0〉+α exp(iφA)|1〉, rather than an equal superposition
of |0〉 and exp(iφA)|1〉.

Similarly, the B92 protocol would have Alice send
states to Bob of the form

|β exp(iφA)〉|α exp(i(φA + φk))〉 k = 1, 2, (34)

where |β| ≫ |α| and there are only two phases chosen by
Alice. The idea is indeed to provide Bob with a full phase
reference to allow him to unambiguously distinguish the
two possible states with a reasonable (but not too large!)
probability. This method is more akin to sharing N ref-
bits, with N large. That method is wasteful in terms of
resources (for other purposes it would be better to use
Qubits or an encoding like that of Ref. [2]) but the large
reference pulse is necessary for security purposes. As an
aside we note that creating superpositions of different
coherent states (even weak ones) is very complicated in
practice, so that sending physical qubits this way is far
from trivial.

For another practical example, we return (hopefully for
the last time) to the discussions about teleportation with
continuous variables (for details, see Refs. [11]). In the
language of the present paper, what the typical teleporta-
tion experiment does is just to use many refbits to enable
certain operations. For example, Bob’s unitary operation
at the end of the teleportation protocol must contain a
phase φA, as it has been introduced by Alice’s joint mea-
surement. In this same context, it was concluded in [11]
that a certain mixture of two-mode squeezed states in
combination with a large phase reference pulse does pos-
sess distillable entanglement, whereas the mixture with-
out phase reference contains no entanglement. In the
language of our formalism, a two-mode squeezed state
by itself contains only ebits, but refbits in the form of a
laser acting as a phase reference can be used to generate
Ebits. Indeed, the procedure used to distill the entan-
glement is essentially the same as that used to convert

an ebit, in a single-shot protocol, to an Ebit by using a
refbit.

Also, we have shown that (incoherent) teleportation,
in the single-shot version, succeeds with probability ap-
proaching unity only if one shares a large number of ref-
bits. This then qualifies and quantifies the statement in
[12] that in a teleportation protocol one always needs to
share a reference frame of some sort.

To return to more abstract concepts, we have shown
that the cobit, as introduced in [6], becomes a more pow-
erful resource (relative to other resources) when no phase
reference is shared. First of all, a cobit can always be
used to convert an unencoded resource into the encoded
equivalent, such as an ebit to an Ebit, or a qubit to a
Qubit. Second, with a reference frame present one has
the equality

2 cobits = 1 qubit + 1 ebit (∗), (35)

with the * indicating this equality holds when a phase
reference is shared. In contrast, without shared phase
reference we do have

2 cobits ≥ 1 qubit + 1 ebit, (36)

but only

1 qubit + 1 ebit ≥ 1 Cobit. (37)

These relations show that the value of a cobit is exactly in
between that of a qubit and an ebit when there is a shared
phase reference, but that it moves closer to a qubit the less
of a shared phase reference one has. The reason for a cobit
to move closer to a qubit is that it can be implemented
only by sending a physical qubit. Being able to actually
send a physical qubit becomes more important in the
absence of a reference frame, since one obviously needs
to send something in order to establish a reference frame.

Let us return to the incoherent version of superdense
coding. With N large we found the relation

1 qubit + 1 ebit + N refbits ≥ (2 − 1/
√

πN) cbits. (38)

This follows from relation (18) by substituting p = 1/2
and replacing N → 2N and using N refbits catalytically.
We note that Alice and Bob could alternatively use N
refbits to estimate the phase difference φA − φB . Subse-
quently, Bob could then decode Alice’s message by using
his best estimate of the alignment of Alice’s reference
frame. That would transfer with high probability 2 clas-
sical bits from Alice to Bob as well in a superdense coding
protocol. The difference between the two approaches is
that in one case they get sometimes only 1 classical bit,
but they know the bits are always correct; in the other
case they always get 2 classical bits, but 1 bit might be
incorrect and they do not know when.

Note, by the way, that using refbits to estimate the
angle φA − φB is the 2-D equivalent of the problem of
estimating the Euler angles of a 3-D Cartesian system by
using spin-1/2 systems [1]. But in the 2-D case, unlike
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in the 3-D case, anti-parallel spins do not perform any
better than parallel spins, as there is an agreed-upon ro-
tation axis that can be used to convert parallel spins into
anti-parallel spins.

Finally, we considered the difference between single-
shot protocols and asymptotic versions of the same pro-
tocols. In particular, encoding becomes a powerful tool
in the asymptotic limit. For instance, whereas one re-

quires an extra cobit in order to convert an ebit or a qubit
into an encoded Ebit or Qubit in a single-shot protocol,
asymptotically one needs no extra resources to achieve
the same conversion. That is the same conclusion as
reached in Ref. [2], of course. Note, though, that exper-
iments in quantum communication typically do not im-
plement the asymptotic version of protocols, but rather
many instances of single-shot protocols.
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