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Syllabus PHYS 354 (Intro to Quantum Mechanics)

! Subject of this course:

o Quantum mechanics

" Why classical physics fails

" Schrödinger equation and applications (tunneling)

" Identical particles & Pauli exclusion principle

" Entanglement?

! Instructor:

o Name: Steven van Enk

o Office: WIL 251 (261 temporarily)

o Email: svanenk@uoregon.edu

o Office hours: Monday 2pm-3pm & Wednesday 11am-12pm

! TA:

o Name: Xiaolu Cheng

o Office: WIL 219

o Email: xcheng@uoregon.edu

o Office hours: Wednesday 10am-11am

! Textbook:

o A.C. Phillips, Introduction to Quantum Mechanics

! Alternative books at similar level:

o French and Taylor (more extensive)

o Hameka (math collected in one chapter)

! Grading:

o Quiz [Tuesday May 1, 2007]: 10%

o Midterm  [2/3 term Tuesday May 22, 2007] : 20%

o Homework: 35%

o Final test: 35%

o Extra credit for active participation in class: max 4%

! Homework:

o Due before class on Tuesdays (no homework in quiz/exam weeks)

o Late (< 48 hours) homework will be corrected, but counts only 50%

o Lowest homework score is dropped
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Old quantum mechanics

! Around 1900 several physical phenomena could not be properly described with classical

physics [Newton’s mechanics, Maxwell’s electromagnetism, thermodynamics]

! Several hypotheses were proposed that solved those problems

o But only in an ad hoc manner (“old quantum mechanics”)

o It took 26 years for a coherent formalism to be formulated that incorporated all

those adhocceries plus more

" That formalism is “weird” and quite advanced mathematically

o We’ll take just a few weeks to do the same

o Let’s take a look at some of those problems

! Radiation in thermodynamic equilibrium at temperature T

o Take a black body, which absorbs all incident radiation, but which generates

radiation when heated to T: what spectrum does it radiate??

o According to the equi-partitition theorem of thermodynamics, every degree of

freedom at temperature T has an energy of kT. The number of different em field

modes (per volume) in a frequency interval then gives the classical energy density

per frequency interval: (Rayleigh-Jeans law)

o So at high frequencies the energy per frequency interval blows up, and the total

energy is infinite….(and so is the energy needed to heat radiation up by any finite

amount). That must be wrong!

o Planck solved this particular problem by hypothesizing that the radiation emitted

and absorbed by a black body comes in discrete packets of an energy equal to

where h is some constant. So the energy at one particular frequency is always an

integer multiple of this quantity.
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Old quantum mechanics

! Assuming a Boltzmann factor for the probability of having a particular number of such

quanta

we get an average energy for each frequency

! This then leads directly to the Planck distribution law for blackbody radiation

! For small frequencies, this agrees with the Rayleigh-Jeans law, but for high frequencies

the energy density is much less, thus giving a finite total energy.

! Moreover, the form of the spectrum agreed with experiments

! Even better, the constant h could be determined. It’s Planck’s constant
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Old quantum mechanics

! Einstein then went one step further in 1905: he assumed all radiation comes in discrete

packets of energy E=hv. That allowed him to explain the photoelectric effect. The kinetic

energy of electrons emitted by a metal illuminated with light of frequency v, is

where W is the “work function” of the metal. The amount of electrons emitted is

proportional to the intensity. Classically, it is a mystery as to why the energy of electrons

does not depend on the energy (ie intensity) of the light beam. This theory was confirmed

accurately only in 1915, by Millikan, who did not believe in quanta (photons)!

W is typically a few eV.

! Einstein’s proposal went in fact even further: apart from assigning energy to “photons” he

also assigned them momentum p=E/c, as if photons are really like particles. This

assumption was confirmed by the Compton effect in 1923-24: (X-ray) photons scattered

off of electrons (that are at rest) change their wavelength depending on the angle of

scattering:
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Old quantum mechanics

! This all makes use of relativistic kinematics (conservation of momentum and energy, see

homework!). The quantity

is called the Compton wavelength of the electron.

! This should not be confused with the De Broglie wavelength of a particle (for instance an

electron) with momentum p: every particle is a wave with

! The strange fact that a particle can behave like a wave was verified in double-slit

experiments with electrons (and neutrons, and bucky balls (fullerenes) C60). This picture

shows how an interference pattern is built up over time from single electrons arriving

individually on a screen (Tonomura, Hitachi, Am. J. Phys. 57, 117 (1989) )

! In the Kapitza-Dirac effect (1933), we go one step further in weirdness: a wave(!) of

electrons diffracts from a periodic material (!) consisting of laser light: Figures are from

Daniel L. Freimund, Kayvan Aflatooni and Herman Batelaan, Nature 413, 142-143(13

September 2001)
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Old quantum mechanics

! The model of an atom used to be that of electrons randomly moving around in a

homogeneous “fluid” of positive charge. That changed when Rutherford (1908), after

scattering alpha particles off gold foils, inferred the positive charge must be localized

within an atom to a small volume: the nucleus. This lead to a new model of the atom, the

Bohr atom, with three postulates:

1. Atoms can only be in certain discrete energy levels En

2. If they “jump” from one level to another, they emit or absorb a photon making up

the energy difference, with hv=En-Em.

3. For circular orbits (of the electron around the nucleus), angular momentum is

quantized:

o This last postulate could be understood from the De Broglie wavelength “fitting”

on a circular orbit:

! Using the balance between Coulomb law and centrifugal force,

and defining the fine-structure constant

we get:

! Plugging in numbers gives

! In  spite of its success getting the ionization threshold correctly and getting spectral

lines of hydrogen and helium correctly,

don’t take this model too seriously! 2-electron atoms and finer details of spectra cannot

be obtained with this model…..
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Old quantum mechanics

! Anticipating properties of modern quantum mechanics, let’s consider measurements: think

of light going through a polarizing filter. If the polarization of the light is e, and the

direction of the polarizer is e’, then the amount of light that goes through is proportional

to

! But then think of a single photon: apparently it has a certain probability P to go through

the filter: after all, either the full energy hv goes through, or nothing (the frequency

does not change!), but the intensity will have to be diminished by the same factor P.

! Probability plays an important role in quantum mechanics. In other parts of physics

probabilities arise only from our ignorance about certain properties (like initial conditions

of a coin before it is tossed, or in statistical mechanics when we have too many particles

to keep track of). In quantum mechanics we need probabilities  even if we know

everything there is to know!

! Moreover, after the filter, if the photon went through, the polarization of light has

changed: it’s e’ now, not e anymore. Hence

o You can’t measure different properties of the same photon, because the first

measurement disturbs the state of the system

o Even worse, if some properties of a photon are certain, then others (different

polarization directions) are uncertain (independent of measurements!)

o More generally this is known as the Heisenberg uncertainty principle. It applies to

pairs of certain observables, like position and momentum, or energy and time, and

it’s written in the form (we’ll be more precise later on)

o Remember the Fourier transform? If one knows the frequency of a wave packet

precisely, then the extent of the wave in time is large, and vice versa. That’s

exactly the same thing, mathematically speaking

! For example, after having measured the position of a particle very accurately, the

particle cannot have a well-defined momentum. (For instance, if we used a photon of a

sufficiently small wavelength lambda to resolve a small length scale, then its momentum is

large, p=h/lambda, and is (partially) transferred to the particle).

o Moreover, even before (and independent of) the measurement, the particle cannot

have had well-defined values for both position and momentum! This point is not

always understood in popular accounts of quantum physics.
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Old quantum mechanics

! Let us consider how the uncertainty principle teaches us something about the wave-

particle duality: Suppose we do a double slit experiment with electrons, with momentum p,

and hence a fixed De Broglie wavelength. Suppose we wish to infer from which of the two

slits the particle came. We could do that by measuring its transverse momentum on

arrival at the screen (by measuring the recoil of the screen)

! For example, at the peak in the center of the screen, the momentum should be +pd/2D if

it came from the lower slit, and -pd/2D if it came from the upper slit. The screen must

obey Heisenberg’s uncertainty principle. That is, if we determine its momentum better

than

then the position of the screen is uncertain by an amount

! But that is just the spacing of the fringes! Thus the interference pattern will be washed

out if we try to determine through which slit the electron came. You can’t measure both

particle and wave properties at the same time. That is what is meant by the “wave-

particle duality”.
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The Schrödinger equation

! Let’s take the fact that everything has a wavelength seriously, and insist on a wave

equation, even for particles. Consider a plane wave of the form

! Then, thinking of the energy of a photon, let us identify

! Thinking of the De Broglie wavelength of a particle, let us identify

! “So”, let us pose that a free particle with mass m (in 1-D) is described by

! This is indeed a wave equation and it obeys the superposition principle.

! Let us make it even more general, by writing

where H described the energy of the particle (or the Hamiltonian, more generally),

expressed in x and p.

This is the (1-D) Schrödinger equation for the wave function of a particle! For example, a

1-D particle in a potential V(x) is described by

! Of course, the Schrödinger equation cannot be derived, it is simply postulated, taking

cues from ad hoc assumptions that seemed to work pretty well. The idea is to derive the

ad hoc assumptions from this more general formalism, and see where the equation takes

us.

! We are going to solve the Schrödinger equation for various forms of the potential. But

first, we’re going to think about what the wave function actually means.
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The Schrödinger equation

! Wave equations describe waves of various sorts: sound waves, water waves, light waves,

vibrations of a string, etc. In all those cases the quantity that vibrates or oscillates has a

clear meaning: air pressure, water height, electric field,  or string amplitude. Those

quantities can be measured (more or less) directly, and so can the time derivatives and

spatial derivatives that appear in the corresponding wave equations.

! The quantum wave function is different!

o It can’t be measured directly

o It has no obvious physical meaning (we will give it a meaning, of course!)

o It is complex, and complex numbers do play an important role: “i” appears in the

Schrödinger equation, for instance (recall that, even if we use complex notation to

describe electromagnetic fields, we really always mean to take the real part of

the complex fields)

o The quantum wave function is meant to describe everything in nature, including

particles…

" The water molecules making up a water wave, are themselves waves

according to quantum mechanics.

! The wave function describes probabilities for physical quantities. For example,

gives the probability to find the particle described by that wave function at position x at

time t. More precisely

and so it gives the probability to find the particle in a small interval dx around x.

This prescription is called the Born rule.

o Obviously we have to normalize the wave function such that

! Note the wave function cannot be directly measured, as we announced before: you need

many measurements on identically prepared particles to estimate the probabilities.

o Again, probabilities arise even if we know the wave function, and do not

necessarily arise from “classical” ignorance
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The Schrödinger equation

! Note we take the absolute value squared: this makes sure we get a real, not complex,

number for the probability.

o That is not just a random choice, but inspired by two things:

" The intensity of light can be written as the absolute value squared of the

complex electric field amplitude, I~|E|2

" The probability of a polarized photon to go through a polarizer is also

determined by an absolute value squared

! Back to the Schrödinger equation itself: it can actually be split into two equations in

special conditions: Suppose we have a (time-independent) function for which

o We say that the wave function is an energy eigenstate: it has a well-defined value

for the energy, namely E. Note (*) is a differential equation.

! The Schrödinger equation then tells us that

! Such a state is called stationary: it’s time dependence is entirely contained in the phase

factor, which does not affect the position or momentum probability distributions.

! Eq. (*) is sometimes called the time-independent Schrödinger equation. But don’t think it

is always valid (only for the stationary states!)

o Nevertheless, Eq. (*) describes perfectly the states required in the Bohr model

of an atom, states with a well-defined energy.

o Indeed, the type of equation (*) is called an eigenvalue equation, and it typically

has only solutions for certain values of E, thanks to boundary conditions that have

to be fulfilled (it’s a differential equation!): this brings in the discreteness of

energy levels automatically.

" It’s similar to vibrations of a classical string being determined by the

length of the string (boundary conditions on the string), or to the

frequency of classical light inside a cavity being determined by the length

of the cavity (boundary conditions on the mirrors).

! 

H(x, p) ˜ " (x) = E ˜ " (x) (*)

  

! 

ih" /"t#(x, t) = H(x, p)#(x,t) = E#(x, t)$

#(x, t) = ˜ # (x)exp(%i&(t % t0))

& = E /h

  

! 

P(
r 
e "

r 
e ') =|

r 
e •

r 
e ' |

2

-11-
The Schrödinger equation

! Consider a simple example, the free particle. We have the time-independent equation

! The general solution can be written as

! That is, there are two independent solutions, a particle moving to the right or to the left

with momentum p; of course both have the same energy. The time-dependent wave

function for a particle moving to the right is then

! Compare this to a plane wave of light

It’s the same thing, except for a different relation between momentum and energy:

! These relations are equivalent to the dispersion relations in optics. We can distinguish,

just as in optics, the group and phase velocities of a particle (in superposition of

different E’s)

o So the phase velocity is half the group velocity

  

! 

"
h

2

2m

# 2

#x 2
˜ $ (x) = E ˜ $ (x)

  

! 

˜ " (x) = Aexp(ipx /h) + Bexp(#ipx /h)

p
2

/2m = E

  

! 

"(x, t) = exp(i(px # Et) /h)

  

! 

r 
E (x, t) =

r 
e exp(i(kx "#t))

=
r 
e exp(i(px " Et) /h)

! 

particle : p2 /2m = E

photon :  pc = E
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phase velocity :  " /k = E / p = p /2m = v /2

Note: a plane wave is not normalizable! 

It’s not a physical solution: instead we should take

a superposition of waves with different values for E

time
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Position and momentum

! Quantum mechanics is all about probabilities, obtained from the wave function. Two

useful concepts are

o Expectation values

o Variances

! If we have a (continuous) probability distribution p(x), then the expectation value of any

function of x, say f(x), is defined as

! The variance of f(x) is defined as

! Note that we can rewrite this as

! It is this variance that can be used to quantify uncertainty in , e.g., position, as it appears

in the Heisenberg uncertainty relations

! For example, what is the average position of a particle? That is, when we average over

the probability distribution, what is the expectation value of the position? Answer: by the

Born rule it should be:

! What is the average momentum of the same particle?? That is more difficult to answer,

because we first need a probability distribution over momentum, rather than position. We

do that by expanding the wave function in plane waves, which as we already know, have a

definite momentum. Thus we take, in fact, the Fourier transform (and its inverse)

o It can be shown that Psi(p) is automatically normalized correctly, if psi(x) is.

! The expectation value for the momentum of a particle is then
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Position and momentum

! But we can also write this as

! After all, applying -hbar id/dx to a plane wave simply gives back the plane wave while

multiplying it with p. It is also consistent with what we observed before, that momentum

corresponds to -hbar id/dx

! Now suppose we use the Schrödinger equation for a particle: it would be a nice

consistency check of all the above relations if we could verify that

! That indeed works out, by using partial integration and assuming the wave function decays

to zero when x goes to infinity (homework!)

! We can generalize the above relation for average momentum to

where A could stand for any operator, acting on the wave function (a pretty abstract

idea!). A can be a differential operator, like d/dx, or a simpler multiplicative operator,

like ‘x’ was. So ‘multiplying by x’ is an operation acting on the wave function, and the

expression for <x> is a special case of (*).

o Note that the order is important! Psi* then A then psi!

! Let’s do something more concrete (although still abstract): “a particle in a box”. Let’s say

we have a potential, V(x)=0 for 0<x<a, and V(x) is infinite elsewhere. Then we should solve

! The boundary conditions simply express continuity of the wave function, using that the

wave function should vanish outside the box, at least for finite energy of the particle.The

solution inside the box is a superposition of plane waves exp(ikx) and exp(-ikx). More

precisely, we get for stationary states with a fixed energy (also called eigenstates of

energy):
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Position and momentum

! First, note that energies are discrete, not continuous. Bohr’s postulate comes out of the formalism

! Second, note these states are neither states with well-defined position for the particle, nor well-

defined momentum (see figure with lowest 4 energy states)

! Third, note the lowest-energy state has some positive energy: classically there would be a zero-

energy state in which the particle is at rest at some position. But in quantum mechanics you cannot

have both a well-defined position and a well-defined momentum

o Indeed, this can be understood quantitatively from the uncertainty principle. The particle’s

position is clearly determined better than ~a, so the momentum can be determined at best

up to an uncertainty of ~h/a. But that means there is always kinetic energy present of size

o Fourth, note from the figure that there are locations where the particle cannot be, if the

energy is fixed to some value: classically this would not happen of course. It is due to

destructive (quantum) interference:

o the solution of the Schrödinger equation with fixed energy is a superposition of two waves,

one traveling to the right, the other to the left. Those two waves interfere, constructively

or destructively! (And similarly, in the double-slit experiment with electrons, it’s two waves

emanating form the two slits that interfere on the screen to give rise to an interference

pattern)

! In the limit of large n, the energies are still discrete. But the relative difference between

subsequent energy levels goes to zero: the system becomes more like a classical system with a

continuous energy. This is a general postulate (by Bohr), that large n should correspond to the

classical limit:
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Position and momentum

! What about momentum in this case? You might think that each of the two waves has a

well-defined momentum (after all, we have two waves moving to the left and right,

respectively), equal to

However this is not true because the waves exp(ikx) are only finite in length. Thus, even

though the energy is well-defined, the momentum is not! The book plots the momentum

distribution as well (it’s the Fourier transform of the spatial wave function)

o But in the limit of large n it does become true (again, the particle becomes more

classical in that limit)

! What would happen if we would measure position? If we know we have some energy

eigenstate to start with, then we know the probabilities of finding the particle in some

region between x and x+dx. Now recall what apparently happens to the polarization of a

photon when we measure it: it changes to the polarization we actually measured. So here

too, right after the measurement the wave function describing the particle changes: it

will become a wave function localized between x and x+dx!

! This is called the collapse of the wave function. Some people find this mysterious, but it

can be most easily understood by interpreting the wave function as nothing more than

giving us probabilities: so it is our knowledge that changes after a measurement, hence we

ascribe a different wave function after the measurement, consistent with what we have

just learned. This new wave function, in turn, gives our best predictions for

measurements to follow.

o With this interpretation, contrary to what the textbook says, there is no physical

mechanism necessary to explain the collapse of the wave function

! In some interpretations of quantum mechanics the wave function is taken much more

seriously, as a real property of the particle, much like a classical wave is more than just a

description. But this will lead to even more trouble when we consider entanglement (this

refers to a strong type of correlation between two different particles)

! Note that for the particle in the box one cannot even measure momentum: that would

need a spatially infinitely extended measurement. Indeed, there are no eigenstates of

momentum in the box.
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Intermezzo

! Is Quantum Mechanics difficult to understand?

! Feynman once said:

o “I think it is safe to say that no one understands Quantum Mechanics”

! Bohr said:

o If quantum mechanics hasn't profoundly shocked you, you haven't understood it

yet.

! Why is that? It’s because the math is difficult, the connection between the math and the

real world is strange, and the resulting description of the real world is counterintuitive:

! Check for yourself how the statements in the right column arise from the formalism of

quantum mechanics in specific cases!

(*) Many measurements of position are necessary to determine |psi(x)|, and many

measurements are necessary to determine |Psi(p)|. Together, they determine psi, both

the absolute value and the complex phase

Particle can be left or right,

but not in between

Particle can be in

superposition of “here” and

“there”

Momentum=Differential operators

Eigenvalue equations

Particle does not have well-

defined position and

momentum

Momentum=Fourier

transform of position

Fourier transform

Probabilities interfere

(e.g. waves from two slits)

Wave function complex,

Cannot be measured

directly(*)

Complex numbers

Real worldMath <--> Real worldMath
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Energy and time

! The Hamiltonian is an operator and it represents the energy. For example

! It shows up in the expectation value of energy

! If we want to calculate the variance of the energy, we would need also

! We already defined stationary states as states for which

o In such a state we have, as expected, a zero variance in energy

o A good reason to call such states stationary is that any physical quantity is time-

independent: for example, the probability to find a particle in some position is

time independent

o For any operator A that is not explicitly time dependent, we have a time-

independent expectation value

! But let us look at more general states, for example a superposition of states with

different energies, such as

o The last line gives the normalization factor. This makes use of the fact that (to

be proven in homework!)

o We call these states orthogonal
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2"(x, t)dx = "*
(x,t# )HE"(x,t)dx =

"*
(x, t# )E

2"(x,t)dx = E
2 $ (%E)2 = 0

! 

H"(x, t) = E"(x,t)

  

! 

P(x, t) =|"(x,t) |2=|"
E
(x)exp(#iEt /h) |2=|"

E
(x) |2

! 

A(t) = "*
(x, t# )A"(x, t) = "*

(x# )A"(x)

  

! 

"(x, t) = a"
E
(x)exp(#iEt /h) + b"

E ' (x)exp(#iE ' t /h)

| a |2 + |b |2=1

! 

"
E '

*
(x, t# )"

E
(x,t)dx = 0 if E '$ E
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Time and energy

! If we use the same relation to calculate the expectation value of the energy, we get

! It looks like we can interpret |a|2 and |b|2 as giving the probabilities to find the particle

with an energy E or E’, respectively. And that’s correct! More generally, if we have

then we can interpret |an|
2 as the probability to find the particle with an energy En

! Actually, the general solution to the Schrödinger equation can always be written in this

form, by expanding in energy eigenstates, provided we know all eigenvalues for E!

! The expectation value of energy in this case is

! Probabilities for other quantities typically vary with time now. For instance,

! In fact, we can rewrite this as

! The first line gives what you would expect: it just adds up the probabilities to find a

particle at position x, given that the energy is En multiplied by the probability to get that

energy. But then the second line gives interference terms. Different probabilities can

interfere constructively or destructively, in a time-dependent way.

! 

E = " #*
(x,t)H#(x, t) =| a |

2
E+ |b |

2
E '

  

! 

"(x, t) = a
n
"

n
(x)exp(#iE

n
t /h)

n
$

| a
n
|2=1

n
$

! 

E = " #*
(x,t)H#(x, t) = | a

n
|
2
E
n

n

$

  

! 

|"(x, t) |2=
m

#
n

# a
n
a
m

*"
n
(x)"

m

* (x)exp($i(E
n
$ E

m
)t /h)

  

! 

|"(x, t) |2=
n

# | a
n
|2 |"

n
(x) |2 +

m$n

# a
n
a
m

*"
n
(x)"

m

* (x)exp(%i(E
n
% E

m
)t /h)
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Energy and time

! Let’s look at a particle moving in 3-D. If we assume it’s in a cubic box, of size axaxa, then

the time-independent Schrödinger equation is

! The solution is a simple extension of the 1-D solution:

! So the energy levels are discrete. Some values for E occur multiple times: we call those

degenerate energy levels. They arise because of a symmetry in the problem: here the

symmetry between x,y and z, hence a threefold symmetry. In an atom the same thing

happens: certain states can occur multiple times, but others do not. In the end, something

similar will explain the periodic system of elements.

! Note that here too the lowest energy level has a nonzero energy. In fact, all of three

numbers l,m,n must be nonzero for a valid wave function. So the lowest energy is simply 3

times that of the 1-D particle.

! What if we break the symmetry by a small amount? For instance, what if the sizes of the

box are not quite equal? Answer: then the levels that were degenerate will split into

three distinct levels, differing by a small amount in energy. That happens in a real atom as

well….For instance, a magnetic field in some fixed direction will split initially degenerate

energy levels of an atom into multiple levels by breaking rotational symmetry.

  

! 

"l ,m,n (x,t) = N sin(kl x)sin(kmy)sin(knz)

kn = n
#

a

El,m,n = (n
2

+ m
2

+ l
2
)

h
2# 2

2ma
2
:= E1(n

2
+ m

2
+ l

2
)

N = 8 /V ; V = a
3

  

! 

"h
2

2m
(
# 2

#x 2
+
# 2

#y 2
+
# 2

#z2
)$(x,y,z) = E$(x,y,z) inside cube

$(x,y,z) = 0   outside cube

3E1

6E1, threefold degenerate

9E1, threefold degenerate

12E1

11E1, threefold degenerate
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Time and energy

! For example, the second level splits into three:

! If a>b>c, then E112>E121>E211 and thus we have levels like this:

! Finally, just as for position and momentum, there is an energy-time uncertainty relation. The

meaning is somewhat less clear, because we would not think of measuring the time of a particle as

we measure the position of a particle. Instead it refers to, for example, the energy of an unstable

particle, or an unstable state of an atom. A stationary state has a perfectly well-defined energy

but a decaying particle does not: the uncertainty in energy of an unstable state is

! Another intermezzo: do we always have to use quantum mechanics?

Nope, fortunately not! For instance, take the uncertainty in momentum of an object with weight of

m=1kg, due to thermal fluctations at room temperature (T=300K).  According to quantum mechanics

we cannot know the position perfectly accurately. But, the uncertainty is much smaller than the size

of an atom:

We are in fact 14 orders of magnitude away from the size of an atom. So we could have an

uncertainty in thermal energy that is 28 orders of magnitude larger before we reach that limit.

Note:

! So the way an atom moves “normally” does not have to be described by quantum mechanics

o There are cases where you do need quantum mechanics for an atom

! But the way an electron moves inside an atom does need quantum mechanics

  

! 

E
l,m,n

=
h
2" 2

2m 1

(
l
2

a
2

+
m
2

b
2

+
n
2

c
2
)

E112

E121

E211

E111

  

! 

"E ~
h

#
   with # the average lifetime

  

! 

kT ~ 4 "10#21J

($p)2 ~ 2mkT%$p ~ 10#10kgm/s

$x ~ h /$p ~ 10#24m

! 

m ~ 10"27kg for proton

m ~ 10"31kg for electron
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Square wells and barriers

! Now we get to more realistic and more complicated potentials. Consider this 1-D

potential:

! Classically, we have two types of solutions: if the energy E of the particle is negative then

the particle is trapped inside the well, no matter how small V0 is. If E>0 then we could

have a particle coming in from the right, gain kinetic energy in the well, bounce off the

infinite potential (“mirror”) and leave the well again.

! In the quantum case we would like to find all possible eigenvalues for E, then we can

expand the general solution in terms of eigenstates of energy. So we solve

and see for which values of E we get a correct solution. In particular, we need this:

o The wave function should be continuous at x=a

o The wave function should be differentiable at x=a

o The wave function should be zero at x=0 (because the wave function must be

identically zero for all x<0)

! We consider two types of solutions (just as in the classical case):

o Bound states for which E<0 (those may not exist if the well is shallow! Why not?)

o Unbound states for which E>0

! 

V (x) =

"

#V0

0

for  x < 0

  for  0 < x < a

for  x > a

$ 

% 
& 

' 
& 

-V0

x=0 x=a

  

! 

["
h
2# 2

2m#x 2
+V (x)]$(x) = E$(x)
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Square wells and barriers

! First the bound states with E<0: inside the well we have a positive kinetic energy, and

! Because of the boundary condition at x=0, we must have that B=0, and so

! Outside the well, we have a negative kinetic energy. Yet there is a solution for that case

! We only get a reasonable solution if D=0. So we get an exponentially decaying wave

function for x>a (alpha is positive!)

! Now we have to match these two solutions at the boundary x=a. We get two conditions

! If we divide these two equations we get rid of the constants A and C, and we get

! This is one equation for two unknowns. But we also have

! We solve these equations graphically

by plotting both curves and looking up where they

cross (here, w=npi/a)

  

! 

["
h
2# 2

2m#x 2
"V0]$(x) = E$(x)%

$(x) = Asin(k0x) + Bcos(k0x)

k0 =
2m(E +V0)

h
2

! 

"(x) = Asin(k0x)

  

! 

h
2" 2

2m"x 2
#(x) = $E#(x)%

#(x) = Cexp($&x) + Dexp(&x)

& =
$2mE

h
2

! 

"(x) = Cexp(#$x)

! 

continuity : Cexp("#a) = Asin(k0a)

differentiability :"#Cexp("#a) = k0Acos(k0a)

! 

" = #k
0
cot(k

0
a)

  

! 

" 2
+ k

0

2
=
2mV

0

h
2

=:w
2

So the particle could be found in a 

forbidden region of space of size ~1/alpha
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Square wells and barriers

! We see there are not always solutions. In fact, if w<pi/2a there are no bound states

(because cot ka >0 then). The cotangent keeps changing sign, and we see that we have n

bound states if (2n-1)pi/2a < w < (2n+1)pi/2a. The plot below gives solutions for the case

where w=2pi/a, when there should be two solutions.

! Note the wave function is not zero in the “classically forbidden” region. A particle there

would have negative kinetic energy! The wave function there decays exponentially.

! Now let’s calculate the unbound states with E>0: Let’s write

! This corresponds to writing the energy outside the well and inside the well, respectively,

in terms of wave numbers k and k0 for corresponding waves. We write the solutions as

where we already took into account the boundary condition at x=0. Notice that we have

two constants now to choose for the wave function outside the well (for bound states we

had only one, because we eliminated the exponentially growing solution). We will have to

fit these two solutions at the boundary x=a.

! Just as we did in the bound case, if we divide these two equations we get rid of A,B:

  

! 

E =
h
2
k
2

2m
=

h
2
k
0

2

2m
"V

0

! 

"(x) = Asin(k0x)  inside well

"(x) = Bsin(kx + #)  outside well (x > a)

! 

continuity : Bsin(ka + ") = Asin(k0a)

differentiability :Bkcos(ka+ ") = k0Acos(k0a)

! 

k cot(ka + ") = k
0
cot(k

0
a)

  

! 

"#k
2

+ k
0

2
=
2mV

0

h
2

= w
2
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Square wells and barriers

! It turns out there are always solutions for these equations, we don’t have to choose

particular values of E. This is thanks to the “extra” parameter delta. That is, one equation

(for E) determines both k and k0 and the remaining equation can be solved for delta (the

cotangent varies between -infinity and +infinity, so there is always a solution).

! Outside the well we can rewrite the solution as

i.e. as a superposition of a wave coming from the right and a wave coming from the left.

Something similar holds inside the well too.

! What if we wish to describe the following process: a wave comes in from the right, enters

the well and reflects back? Then we certainly need a nonstationary state, i.e. a

superposition of states of different energies. For example, an incoming wave (from

+infinity) can be written as

c(E) can be any function: but if we take a function that is nonzero over a range ~h/T,

then it describes a wave packet with a duration ~T.

! Suppose we want to describe the same wave packet, but translated in time by some

amount tau. That’s simple, take:

and so we get that by replacing

! So an energy-dependent phase factor in c(E’) corresponds to a time delay. In particular,

the phase delta in the reflected wave (see above), also represents a time delay:

! One gets this by Taylor expanding delta around some central value E:

! And it’s the term linear in E’ that gives the time delay.

! So the reflected wave in the square well has a time delay of 2tau: that’s the time the

particle spends in the well, on average, before leaving it.

! 

"(x) = Bsin(kx + #) =
B

2i
[exp(ikx + i#) - exp(-ikx - i#)]

=
Bexp(-i#)

2i
[exp(ikx +2i#) - exp(-ikx)]

  

! 

"
in
(x,t) = c(E ')exp(-ik(E ')x # iE ' t /h)

0

$

% dE '

k(E) =
2mE

h

  

! 

"
in
(x,t # $) = c(E ')exp(-ik(E ')x # iE '(t # $) /h)

0

%

& dE '

  

! 

c(E ')" c(E ')exp(iE '# /h)

! 

d"(E ') /dE '= time delay

! 

"(E') ="(E) +d"(E')/dE'(E'-E) +....
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Square wells and barriers

! In general we will see, even for more complicated potentials that

1. Wave functions oscillate in regions where the kinetic energy is positive

2. Wave functions decay exponentially in “classically forbidden” regions where the

kinetic energy is negative

3. Potentials that are sufficiently deep can give rise to bound states,

o  the energies of bound states are discrete

4. Particles scattering off of potential wells and escaping to infinity are unbound

states

o The energies of unbound states are continuous (not discrete)

! Now let’s look at the opposite of a well, a barrier: a region of space with a higher

potential than the outside.

! Classically, two things can happen: if E<VB then a particle coming in from, say, the left will

reflect (bounce)  off the potential. But if E> VB then the particle will travel through the

potential. Quantum mechanically it’s all a bit more complicated and the particle will be

both reflected and transmitted.

! As always we solve the time-independent Schrödinger equation, and we can again

distinguish two cases E<VB and E>VB . The former case is the most interesting, and we’ll

focus on that case. It’s easy now to write down the generic form of the solution:

where

! 

V (x) =

0

+V
B

0

for  x < 0

  for  0 < x < a

for  x > a

" 

# 
$ 

% 
$ 

x=ax=0

V=VB

V=0

x=a

V=0

! 

"
E
(x) =

Aexp(ikx) + A'exp(#ikx)

Bexp(#$x) + B'exp($x)

Cexp(ikx) + C'exp(#ikx)

for  x < 0

  for  0 < x < a

for  x > a

% 

& 
' 

( 
' 

  

! 

k =
2mE

h
2
; " =

2m(V
B
# E)

h
2

Note exponential functions in 

classically forbidden region
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Square wells and barriers

! Now we have so many free parameters (6) that we can again chose any energy E and find a

solution. Moreover, there are two types of solutions for each value of E. This degeneracy

is related to a symmetry in the problem (which one?).

o Let’s take a particle coming in from the left: we put C’=0. We rename some of the

coefficients to indicate reflection and transmission coefficients:

o Then we match the solutions at the two boundaries x=0 and x=a, requiring

continuity of both the wave function itself and its first derivative. We get at x=0:

o And at x=a we have similarly

o From the equations at x=a we get

o Instead of looking at the general solution we restrict ourselves to the case of a

“wide” barrier, i.e.

o From the equations at x=0 we get then (neglecting B’ compared to B)

o For AT we get (rewriting B’ in terms of B, and then eliminating B in favor of AI):

o The probability to find the particle in the region to the right goes with the

|psi|2.So, relative to the incoming wave, the probability of tunneling through the

barrier is

! 

"
E
(x) =

A
I
exp(ikx) + A

R
exp(#ikx)

Bexp(#$x) + B'exp($x)

A
T

exp(ikx)

for  x < 0

  for  0 < x < a

for  x > a

% 

& 
' 

( 
' 

! 

continuity : A
I

+ A
R

= B + B'

differentiability : ik(A
I
" A

R
) =#(B'"B)

! 

continuity : A
T
exp(ika) = B'exp("a) + Bexp(#"a)

differentiability : ikA
T
exp(ika) ="(B'exp("a) # Bexp(#"a))

! 

exp("#a) <<1! 

B'= Bexp("2#a)
# + ik

# " ik

! 

2ikA
I

= (ik +")B

2ikA
R

= (ik #")B

! 

A
T

= A
I

"4ik# exp("#a)

(# " ik)2

! 

A
T

A
I

2

=
"4ik# exp("#a)

(# " ik)2

2

= exp("2#a)
16k 2# 2

# 2
+ k

2
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Square wells and barriers

! The nonzero probability of tunneling is exponentially small in the barrier width a. It also

depends on alpha, a parameter with dimensions of 1/length, which in turn depends on how

much the barrier is above the energy of the particle.

! This exponential dependence can be exploited: a particle is very sensitive to the width of

the barrier. For example, take electrons in a metal. From the photoelectric effect you

may recall electrons need a few eV of energy to be released from a typical metal. If we

have two metals close by, an electron may tunnel from one to the other. We have, roughly,

! The change in tunneling probability when the distance a changes, is

! So if you change the distance between two metals by just 0.01nm, the relative change in

T is about 20%! That change can certainly be measured, and the scanning tunneling

microscope (STM) is based on this effect. It consists of a sharp metal tip (consisting of

~1atom!), that moves over a surface to be investigated. Atomic-size irregularities of the

surface can be easily detected that way. Here’s an example of an STM image:

Not to be confused with the scanning electron microscope, having resolutions of up to a nm!

  

! 

" =
2m(V

B
# E)

h
2

  

! 

" =
2m(V

B
# E)

h
2

$10
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m

#1

! 

"T

T
# $2%"a



-28-
Square wells and barriers

! Protons can tunnel too, of course. They do so in the interior of the sun (and other stars).

Protons are repelled from each other by the Coulomb force. But when they get really

close, they experience the strong force (that holds all nuclei of atoms together!): a

strong force with a very short range (~2fm). The could never bridge that distance (given

their thermal energy of 1keV only at T=107 K) were it were not for the tunneling effect.

Protons can tunnel with probability 3x10-10 and start the fusion process that fuels the

sun. Fortunately, it’s a small probability and our sun lives quite long.

! This same effect explains why atoms (and the nucleus) actually exist. Tunneling is crucial

as it is the first step in the fusion process.

! A rough order of magnitude estimate: with 1keV of energy the protons can approach each

other only up to a distance of 10-12m (homework!), and the parameter alpha is ~1015 m-1.

! Actually, the (Coulomb) potential is not constant, so alpha is effectively smaller: the

proton has to bridge the full energy gap only when it gets close to the 2fm region.

! Here’s a picture of the potential barrier and the wave function of the tunneling proton

(not to scale!)
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Real observables

! Although we will come back to observables in Section 7, the following is related to

homework problems 3-9 and 4-2.

! Recall the expression for the expectation value of momentum:

! It may not be clear at all why this would be a real number. Let’s verify it is real by taking

the complex conjugate of this expression:

o So this is a real number, indeed.

! We made use here of integration by parts, and assumed the boundary term vanishes:

! In quantum mechanics we insist that any observable is represented by an operator A that

satisfies

! Just from this condition we can then show that

1. The expectation value of A is always real

2. The eigenvalues of A are always real

3. The eigenstates of different eigenvalues are orthogonal

! That is, we have

! This wil also imply we can expand an arbitrary wave function as

The coefficients |cn|
2 can be interpreted as probabilities to find the value alphan for the

observable A in the state described by this wave function

  

! 

p = "*
(x,t)(#hi$ /$x)"(x, t)%

  

! 

p
*

= "(x,t)(hi# /#x)"*
(x,t)$

= % (hi# /#x)"(x,t)"*
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d /dx[ f (x)g(x)] = g(x)df (x) /dx + f (x)dg(x) /dx"
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b
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b
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b
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"
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true for energy eigenstates
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The harmonic oscillator

! The harmonic oscillator is surprisingly important in quantum physics. You might think it

just describes a pendulum or a block attached to a string, but the harmonic oscillator is in

fact crucial to all kinds of fundamental quantum-mechanical objects

o Experiments on ions in traps: ions (used for time- and frequency standards or

quantum computing) are trapped in a harmonic potential

o Diatomic molecules are, approximately, described by a harmonic oscillator as far

as their vibrational degree of freedom is concerned

o The electromagnetic field is really a collection of independent harmonic

oscillators: each frequency corresponds to one oscillator. We won’t be able to

treat photons properly yet, but we will recognize certain properties of harmonic

oscillators as properties of photons

o Elastic vibrations of solids can be described as harmonic oscillators (these are

called phonons now, and are very much like photons)

o On a more complicated level, some of the concepts we encounter in this Section

are crucial for quantum field theory

! The harmonic oscillator is defined by the force F(x)=-kx, with k the “spring constant”.

We will want the potential energy corresponding to that (conservative) force in our

Hamiltonian:

! Classically we have

! Classically, we have a strictly periodic motion, with definite position, momentum, and

energy:

! Quantum-mechanically, we will not have states with well-defined values for all of those

quantities. In particular, states with definite energy are stationary (as they always are)

and don’t oscillate.

! The Hamiltonian is

! 

V (x) = " "kx'dx '
0

x

# =
1

2
kx

2

! 

˙ ̇ x = "# 2
x; # = k /m

x(t) = Acos(#t + $)
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E =
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2
m˙ x 

2
+

1

2
kx

2
=

1

2
kA

2
=

1

2
m" 2

A
2

  

! 

ˆ H = "
h

2

2m

# 2

#x
2

+
1

2
m$ 2

x
2

we will use omega rather than k: it has the

more obvious physical meaning
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The harmonic oscillator

! As always we first want to look for states with definite energy E that evolve as

! We thus look for states that satisfy

! The potential energy does go to infinity for large |x|. The wave function must, therefore,

go to zero for |x| large. We expect a discrete energy spectrum then, and we denote the

allowed energies by En. We number them by n=0,1,2….

! We first give the solutions and only later derive them:

o The energies turn out to be really simple, and evenly spaced:

o Here is a picture of the eigenstates, the wave functions psin(x)

o Note the number of nodes of excited states!

o Also note the similarity of the energy of the

harmonic oscillator and the energy of n photons:

indeed, a photon is an excited state of an oscillator.

Not an ordinary oscillator but a more abstract one….

o These states are stationary and the probability

distribution for position does not vary in time

o The higher-energy wave functions extend farther

up the potential hill

o There are symmetric and anti-symmetric wave

functions

" with even and odd parity , respectively.

" Indeed, the Hamiltonian stays the same (is invariant)

under x<--> -x. The negative-parity wave functions change sign,

but that is irrelevant for physical observables. There is no degerenarcy here

because the mirror image of the eigenstate is the same state, unlike in

the case of unbound states near a barrier or well (Section 5).

  

! 

"(x, t) ="
E
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The harmonic oscillator

! What we don’t derive yet is the following: the expectation values for position etc. are

and for momentum we have, very similarly

o Indeed, note the symmetry of the Hamiltonian under interchanging x/a and ap

! If we multiply the uncertainties in position and momentum we get

! The ground state (n=0) actually reaches the minimum possible uncertainty

! The expectation values for potential and kinetic energy follow directly from the above:

! The values of kinetic and potential energy separately fluctuate in the energy eigenstates,

but their sum is fixed to be En

o What would we need to calculate in order to find the uncertainties in Ekin and Epot?

! Let’s see if we can guess at least one of the

energy eigenstates:

So we found the ground-state wave function, apparently!
  

! 

If   "(x) = exp(#(x /b)2)  then

"'(x) = #2x /b2 exp(#(x /b)2)
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1

2
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)
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a is a length scale
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The harmonic oscillator

! In the stationary states the particle does not seem to oscillate. If we take a

superposition of different energy eigenstates then we do get time-dependent position

probabilitities etc.:

! The probability distribution thus oscillates at all integer multiples of omega. The average

position, though, oscillates with a frequency omega, but not with higher frequencies. This

is because integrals like this vanish: (we’ll prove this later, maybe)

! Indeed, in arbitrary states we will have the “classical” result

(In a stationary state we have A=0)

! Now let’s consider a realistic example: Diatomic molecules are approximately described by

a harmonic force between the two nuclei. In fact , almost any potential with a minimum is

equivalent to a harmonic oscillator near the minimum (Taylor expansion!)

! There is a minimum here because

o The Coulomb potential forms a barrier when the nuclei are close

o The electrons no longer bind the two nuclei when they are far apart

o In between shared electrons bind the nuclei (“molecular bond” “covalence bond”)

  

! 

"(x, t) = c
n
"

n
(x

n

# )exp($iE
n
t /h)%

|"(x, t) |2= c
n
c
m

*"
n
(x

n

# )"
m

* (x)exp($i(E
n
$ E

m
)t /h)

m

#

! 

x(t) = Acos("t + #)! 

"
m

*
(x)x"

n
(x)# dx = 0  when  |m $ n |>1



-34-
The harmonic oscillator

!  Actually, for large separations between the two nuclei the potential is no longer

harmonic, and the energy levels are actually closer to each other than in the exact

harmonic oscillator.

! Also note a molecule has more degrees of freedom than the vibrational one, namely

rotational and electronic degrees of freedom.

! A molecule absorbs and emits various types of photons depending on which levels the

molecule decays from:

o Visible light for electronic levels

o Infrared light for vibrational levels

o Microwave radiation for rotational levels

! The 3-D (isotropic) harmonic oscillator is not much more difficult than the 1-D version:

the Hamiltonian is the sum of 3 terms

and so the energy eigenstates are products of 3 1-D eigenstates:

! The 3-D ground state has a zero-point energy of 3 units of the 1-D case

! States with higher energies are more degenerate:

! There is more symmetry than for the particle in a cubic box.
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The harmonic oscillator

! The following method to find eigenstates and eigenenergies is quite mathematical, but

the technique used will come back in later courses on quantum mechanics:

! First, make the Schrödinger equation dimensionless, by defining

and writing the wave function as a function of q, not x

! We get the Schrödinger equation :

! Now the difference of two squares can be simplified: (a-b)(a+b)=a2-b2. Here we have to

be careful with the order of differentiations, but it is easy to check that

! Similarly we find

! Let’s call the two operators appearing here

! Now suppose we have found the nth eigenfunction. Then we have

! Now apply the operator a+ to the first equation

! But, we can also write this as

! That is, the function a+psi is also an eigenstate! In fact, using the second equation (2) we

have

! So by applying the operator a+ we get a new solution where the energy is one unit higher.

We call a+ the raising operator. This explains why the energies are evenly spaced.
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The harmonic oscillator

! Namely, we can first solve this equation

! For this implies:

! After that we just keep applying the raising operator to get higher and higher excited

states:

! Since we can write now

we can use that to calculate integrals like the one we saw before:

Indeed, we can see that the integral is nonzero only for |m-n|=1.

! The lowering operator removes one unit of energy: in the context of photons, the

operator is also called the annihilation operator: it annihilates one photon. We can

describe similar operators to described annihilation of particles/antiparticles, such as an

electron and positron getting annihilated while creating two gamma photons.

o That process is described by two creation operators for gamma photons, one

annihilation operator for an electron, and one for the positron. We can calculate,

e.g., the probabilities for that process, and the result agrees with experiments.
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We do need to normalize

the wave functions, but we

won’t worry about that now
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Commutators

! We encountered several operators: the Hamiltonian, the momentum operator and the

position operator. Unlike when multiplying numbers you have to take into account the

order in which you multiply operators. For example, consider the products

! We write the difference between these two expressions as

! We say, x and p do not commute, and the last line defines the commutator of x and p.

! The commutator is a convenient object because it allows us to see which observables can

have well-defined values at the same time. Namely, suppose we have (a complete set of)

eigenstates of two observables A and B simultaneously: then A and B must commute:

! So a particle cannot have both well-defined position and momentum because x and p do

not commute.

! Other examples:

o suppose we have a particle in 3-D. Could we have a state with well-defined

momenta in the x and y directions, and well-defined position z? Answer: yes,

because the three corresponding operators (d/dx, d/dy, z) commute.

o Can we have well-defined potential energy and well-defined kinetic energy for a

harmonic oscillator? Answer: no, because x2 and p2 do not commute.

! There is another nice application of commutators: Consider the time derivative of the

expectation value of some operator A:
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! So a quantity is conserved when it commutes with the Hamiltonian!

o E.g., energy is conserved because the Hamiltonian commutes with itself…

o Note we assume here that A is not explicitly time-dependent!

! How could we guess what quantities commute with a given Hamiltonian? Answer: that

depends on the symmetries of the Hamiltonian: For example:

o Suppose we have a 3-D particle, and the potential does not depend on z. Then the

momentum in the z-direction is conserved. This is true classically as well, because

there is no force in the z-direction. Quantum mechanically, d/dz then commutes

with both the kinetic energy and with V(x,y). We say, the Hamiltonian is invariant

under translations in the z direction.

o Similarly, if we have a potential that is invariant under rotations around the z

axis, then the angular momentum in the z direction is conserved. Let’s work that

out: Angular momentum in the z direction is, just as in the classical case:

If we use cylindrical coordinates

we can write

And so we have

o So indeed, if the potential does not depend on the angle phi (and hence it’s

invariant under rotations around the z axis) then d/dphi will commute with the

Hamiltonian.

o For later use we note
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The structure of quantum mechanics

! Quantum mechanics uses two important concepts:

o The wave function describes the state of a particle: in fact, it gives a complete

description: everything we want to know is “encoded” in the wave function

o There are operators acting on the wave function: each measurable property (i.e.

observable) is represented by some operator

! The two concepts come together in the Schrödinger equation (in 1-D)

o Thus energy, represented by the Hamiltonian operator, plays a special role, more

special than any other observable or operator

! The outcomes for a specific observable are often discrete, rather than continuous. The

possible values an observable could have are determined by the eigenvalues of the

operators. All operators corresponding to observables have only real eigenvalues.

o We have seen that eigenvalues of the Hamiltonian determine the possible energies

a particle can have in a given potential

o The corresponding eigenstates of an observable are the unique states in which

that observable has a well-defined value. So far we only considered energy

eigenstates, but soon we’ll include angular momentum eigenstates

! In general, for an arbitrary state, a given observable does not have a well-defined value.

Instead, Quantum mechanics gives us probabilities for finding certain outcomes of

measurements. When expanding the wave function in eigenstates of any observable, the

expansion coefficients yield the probabilities to find the corresponding eigenvalues.
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The structure of quantum mechanics

! Quantum mechanics uses two important concepts:

o The wave function describes the state of a particle: in fact, it gives a complete

description: everything we want to know is “encoded” in the wave function

o There are operators acting on the wave function: each measurable property (i.e.

observable) is represented by some operator

! The two concepts come together in the Schrödinger equation (in 1-D)

o Thus energy, represented by the Hamiltonian operator, plays a special role, more

special than any other observable or operator

! The outcomes of a measurement of a specific observable are often discrete, rather than

continuous. The possible values an observable could have are determined by the

eigenvalues of the operators (see below). All operators corresponding to observables have

only real eigenvalues.

o We have seen that eigenvalues of the Hamiltonian determine the possible energies

a particle can have in a given potential

o The corresponding eigenstates of an observable are the unique states in which

that observable has a well-defined value. So far we only considered energy

eigenstates, but soon we’ll include angular momentum eigenstates

! In general, for an arbitrary state, a given observable does not have a well-defined value.

Instead, Quantum mechanics gives us probabilities for finding certain outcomes of

measurements. When expanding the wave function in eigenstates of any observable, the

expansion coefficients yield the probabilities to find the corresponding eigenvalues:
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Angular momentum

! Classically there is one type of angular momentum, defined by

which is a vector with three components (for instance, x,y,z). We call the

quantum equivalent the orbital angular momentum.

! Quantum mechanically there is an additional type, spin angular momentum

 (denoted by S). There is no classical equivalent quantity! It also has three components.

We first look at properties of both types of angular momentum without proving or

deriving them.

! The sum of the two types of angular momentum is called the total angular momentum, and

is denoted by J. So we write

! In quantum mechanics, we cannot measure all three components of angular momentum at

the same time (neither of J, nor L, nor S). And the three components also cannot have a

well-defined value (with one exception if all three components are zero). This is because

the three components do not commute. So the picture of a vector pointing in a well-

defined direction doesn’t apply in quantum mechanics.

! Let’s consider which quantities do commute. For instance, take the length squared of the

orbital angular momentum vector

! It turns out it commutes with any single one of the three components (we’ll get back to

this in more detail) of L. (The analogous property holds  for S and J)

! What values (i.e. eigenvalues) can L^2 have? Answer:

! The number l is called a quantum number just as n is used to denote the quantum number

for energy. Angular momentum is quantized too, it comes in discrete amounts, just like

energy.

! Given states with fixed quantum number l, what can be the (eigen)values

of a given component of angular momentum, say Lz? Answer:

The number m is yet another quantum number
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Angular momentum

! For example, let’s say we have a particle and know the quantum number l=3. Then we know

the length squared of the L-vector is 3x4=12 (in units of hbar^2). Now if we measure any

component of L---the projection of L onto any direction---the result can be one of seven

different numbers: -3,-2,-1,0,1,2,3 (in units of hbar).

! Now here we actually have one of those cases where a “realistic” model for quantum

mechanics would fail: on the one hand we know that each component squared, whichever

one we measure, will have one of four values, 9,4,1,0 (in units of hbar^2). And if we add

the squares of three orthogonal components, like the x,y,z components, we must add up to

12. But that can happen only, one would think, if all three terms are equal to 4. But in

experiments we certainly do find sometimes 9, sometimes, 1 and sometimes 0. How can

the two remaining components ever add up to 3, 11, or 12, respectively??

! The answer is, the other two components simply cannot and do not have well-defined

values, once we have measured one component of L. Of course, you could measure another

component afterwards, but that will destroy the value you had measured before.

! So again, in quantum mechanics it’s not just we don’t know certain values of certain

observables, but, worse, such values can’t even exist.

! It gets even stranger when we consider spin angular momentum. The values of S2 can take

on are

! The components of S take on values

! The number m is sometimes given a subscript ms to distinguish it from the m quantum

number that goes with L (and there’s another one going with J, too!)

! Now if we take s=3/2, then we have

! But you can never add up three values 9/4 or 1/4, to add up to 15/4!
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Angular momentum

! How do we measure angular momentum? Usually the particle is charged (with charge q) and then

there is a magnetic moment associated with the angular momentum. Classically we have the relation

(m is the mass of the particle)

! For instance, for an electron with q=-e we have this picture:

! The magnetic moment is defined as current times area, with here:

! Quantum mechanically we have the same relation between orbital angular momentum and magnetic

moment. But since L can’t be pictured as a vector pointing in a definite direction, nor can the

magnetic moment!

! For the relation between spin angular momentum and magnetic moment there is a twist: it depends

on what particle we’re looking at. For example, for an electron we have

! The extra factor of almost -2, is called the electron g factor. It can be calculated from

(complicated) quantum electrodynamics. It is in fact one of the best known and measured quantities

in physics! Theory and experiment agree to one part in 1012.

! Now you might think we’re cheating: S is a “half-integer” spin, but then we multiply the magnetic

moment by 2!

o We can measure that, indeed, there are only 2 values for ms for an electron (which has

s=1/2), namely m=-1/2, m=+1/2. If it were really s=1, there would be three values, m=-1,0,+1.
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Angular momentum

! We can measure the magnetic moment by putting the particle in an inhomogeneous

magnetic field and seeing how it is deflected. In fact, if we want to measure the z-

component, we just apply a magnetic field in the z direction. Why is there a force? The

magnetic energy is analogous to that of an electric dipole in an electric field:

When B depends on position, there is a force, Fz =-dE/dz.

! Since the magnetic moment is quantized, then so must this force. The force will deflect

particles with a magnetic moment in discrete (not continuous) ways. The measurement is

done with a Stern-Gerlach device. This measurement (done in 1922) was crucial for

discovering half-integer angular momentum.

! Classically, the deflection would be continuous, but in the actual experiment, silver atoms

ended up in only two different spots. This corresponds to having a (total) angular

momentum of 1/2. Indeed, by measuring the size of the deflection the magnetic moment

could be inferred: it agrees with quantum theory

! In quantum mechanics the magnetic moment will always be proportional to the so-called

Bohr magneton ( a unit of magnetic moment)

apart from a dimensionless factor. For electrons this factor is of order unity. In general

the factor depends on what (charged) particle we have, electron, muon, proton, quark…and

on whether the particle has spin angular momentum, orbital angular momentum, or both.

Even a neutron has a magnetic moment, because it consists of charged quarks. For

neutrons and protons it makes sense to define a similar nuclear magneton, by
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Angular momentum

! In atoms the same effect leads to a shifting of energy levels in a magnetic field. That

energy shift can be observed by measuring the wavelength of light emitted by atoms in a

magnetic field. It’s called the Zeeman effect, and it gives us a different (indirect) way to

measure the quantized nature of angular momentum.

! Back to orbital angular momentum: there are three components, given by (classically)

! Quantum mechanically all three components turn into operators, by replacing both

position and momentum by their operator equivalents. Those operators act on the same

wave function that we have seen many times and that satisfies the Schrödinger equation.

! For example, we can write down expectation values and variances: that in fact shows that

an eigenstate of angular momentum has a well-defined value of angular momentum, and

zero variance:

! Now we’re going to look at some special functions, that turn out to have “simple” angular

momentum properties. First, consider any spherically symmetric wave function

! Now it is easy to see that the vector r is parallel to the gradient of the function. That is,

the angular momentum is zero:

! So for a spherically symmetric wave function all three components of L are zero! This is

an exceptional case where noncommuting operators do have (just one) common eigenstate.

Obviously, also L2 is zero in this case. We have, then, found (a whole set of) eigenstates

of zero angular momentum. We denote it by adding two subscript 0’s:
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! This common eigenstate occurs, in spite of the commutator between, say, Lx and Ly not

being zero, because the commutator acting on that special wave function is zero! Namely,

we have (homework!)

! Now consider a slightly more complicated wave function:

! Now the first term is zero, since R/r is also some function of r alone; and the second

term is easy to calculate: it is zero also, because Lz contains only derivatives w.r.t. y and

x. So

! We can just as easily calculate now:

! So the new wave function is an eigenstate of Lz but not of Lx or Ly .. But by applying Lx or

Ly again, we see

! Since we already know that Lz gives zero, we get that psi is in fact an eigenstate of L2,

with quantum number l=1 (since then l(l+1)=2):

! Obviously, by replacing z with x or y, we can get eigenfunctions of Lx or Lywith eigenvalue

0. More interestingly, we can also find the eigenstates of Lz with different eigenvalues

(quantum numbers) m=+1 and m=-1:

! As we announced before, there are no more values for m allowed, for given l=1.
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This does mean psi is a superposition of eigenstates

of Lx with eigenvalues mx=+1 and mx =-1
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! We could continue like this and find, by accident, more and more eigenstates of Lz and L2.

! There is also a systematic way, by writing the angular momentum operators in spherical

coordinates. You don’t need to know the details, but the eigenfunctions are of this form:

! The Ylms are called the spherical harmonics. They are orthogonal in the following sense:

! The r -dependence of the wave function is not at all determined by angular momentum.

This means we can in principle find a third observable, which commutes with both L2 and

Lz , which determines the function r. For example, typically this third observable will be

the Hamiltonian, provided the potential depends only on r, not on the angles phi or theta.

! The phi dependence of the spherical harmonics is simple:

! The reason for that is as follows. Instead of using spherical coordinates (homework!),

let’s use cylindrical coordinates to figure this out (the angle phi is the same in both

coordinate systems)

! Angular momentum in the z direction is

o If we use cylindrical coordinates

we can write

And so we have
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! The final result for the angular momentum in the z direction is

! Now we can easily see what the eigenfunctions are of this operator

! Now, ‘of course’, we should have

! But what about spin angular momentum for which m is a half integer??

o Answer: the wave function of a half-integer spin particle changes sign when

rotated over 360 degrees! Spin is weird.

o This sign change can be measured by interference between two beams of, say,

neutrons or electrons, one of which is rotated, the other is not.

o Particles with half-integer spin are called fermions, as opposed to bosons, which

have an integer spin

! Back to symmetry and conserved quantities. In general, if a potential does not depend on

the angle phi (and hence it’s invariant under rotations around the z axis) then d/dphi will

commute with the Hamiltonian. So angular momentum in the z direction is conserved in

that case. This is true both classically and quantum mechanically.

! Back to spin angular momentum: it has no equivalent in classical physics. The operator S

does not act on the wave function psi that we have used so far (if it did, it would have a

classical interpretation!). Instead, we “attach” another type of wave function to each

particle that has nonzero spin. For instance, an electron has spin s=1/2, and so there are

two states we can distinguish, m=-1/2, and m=+1/2. We write the spin part as a 2-D

vector:

! So it’s as if the electron now has two independent wave functions, one for “spin up” and

one for “spin  down”
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! Also let’s note that every (elementary) particle has one fixed value of the spin quantum

number s (electron, proton, neutron, all have s=1/2, photon, W-boson have s=1, graviton

s=2).

! So this is unlike orbital ang mom, which could take on any (integer) value, for a given

particle.

! Nuclei of atoms also have spin angular momentum, because they consist of protons and

neutrons. If we have an odd number of “nucleons”, then the nuclear spin is half-integer.

So the nuclear spin does depend on which isotope we’re looking at. For example, 133Cs has

I=7/2 (denoted by I now!). This, though, does refer to the ground state of the nucleus.

The energy needed to excite the nucleus is so large that indeed I=7/2 is the natural value

of the nuclear spin.

! Finally, returning to J=L+S. The quantum numbers j,l,s are not completely independent, of

course. Thinking about how to add two vectors of given length, we get this: f we fix l and

s, then j can take on the values

! The m-values are much easier: we simply have mj=ms+m ( we usually don’t write ml!)

! All this is important in order to understand atoms: an electron with spin and fixed orbital

angular momentum can combine the two in different ways to make up different states

(with slightly different energies).

! 

j
max

= l + s

j
min

=| l " s |

j = j
min
, j
min

+1,...j
max

"1, j
max
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! The hydrogen atom can be solved completely, in quantum mechanics. So it’s an important

test for quantum mechanics to compare all results to experiment.

! We first neglect the motion of the proton, and assumed it’s fixed in the origin. This is not

an approximation: we can separately study the center-of-mass motion, and the relative

motion (we’ll return to this issue later). The relative motion is what we’re interested in,

not how the H atom moves as a whole.

! The electron then moves in a spherically symmetric potential, V (r) , the Coulomb

potential.

! In any central potential, angular momentum is conserved. In QM, therefore, all three

components of L commute with the Hamiltonian. So we can try to find states with definite

values of energy, the length of L, and Lz.

! For the ang mom part, we already gave a name to the eigenfunctions, so we can write

(using spherical coordinates, of course)

! Now we “only” need to find the form of the r-dependent part R. As always, the more

nodes the wave function has, the higher the energy. In fact, let’s call the number of

nodes in R, nr. It turns out, the total energy is this:

! Here, n is the principal quantum number, and it is simply determined by the sum of nr and

l. Indeed, the ang mom contributes, indirectly, to the energy: namely the kinetic energy

of the motion perpendicular to r is proportional to L2 (also classically).
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just as in the Bohr model!
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! This can also be seen as an extra potential energy, the centrifugal energy. If the electron

has ang mom, it can’t be too close to the origin, r=0, it’s “repelled”. See Fig. 9.2 for a plot

of the effective potential energy the electron with ang mom l sees. Thus, all wave

functions for l>0 are vanish in the origin (namely like ~rl)

! The function R decays exponentially with r. In fact, we have

! Recall the wave function of the harmonic oscillator: exp(-(x/a)^2) for the HO vs exp(-

x/a0) of H. Here a and a0 are different! Why does one decay much faster than the other?

! For each energy level n, there are several possibilities: we only need the number of nodes

plus l equals n-1. So states with more energy are more degenerate, just as for the

harmonic oscillator. We indicate levels by first writing down n, then a letter indicating

with ang mom, where s=0, p=1, d=2, f=3, etc.

! We can also sketch the wave function belonging to those levels, with all the information

we have now. See Table 9.1 and Fig. 9.4.

! The theory so far is non-relativistic. It turns out, taking relativity into account leads to

small corrections to the energies (typically, quadratic in the fine structure constant,

because the speed of the electron is ~alpha c).

o For example, the 2p state really splits in two different energy states, 2p1/2 and

2p3/2, depending on whether the spin of the electron is parallel or anti-parallel to

its orbital ang mom, that is, depending on whether the total ang mom quantum

number is j=1+1/2, or j=1-1/2.

o The 2s and 2p states differ in energy, too, as a result of the different way they

interact with the vacuum: the Lamb shift is the energy difference between 2s1/2

and 2p1/2. due to interaction with the zero-point energy.

o These relativistic corrections have been verified to 14 decimal places….

! Another aspect of the H atom: a photon can be emitted when the H atom decays from,

say, 2p to 1s. Since the spin of a photon is s=1, transitions only happen with large

probability when the ang mom of the atom, l, changes by 1 (ang mom conservation!). So

indeed a p to s transition works, or d to p, etc.

! Can’t a photon have orbital ang mom? Yes it can, but that is transferred to the center-of-

mass motion of the atom.

  

! 

R(r) ~ exp("r /na0)Poly(r)
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! Finally, when we separate the center-of-mass motion from the relative motion of the

electron and the proton, we actually should define a reduced mass. Namely, we have

! You probably used the same trick in classical mechanics when looking at how the moon

orbits around the earth, or how the earth orbits around the sun.

! But it means we should not really use the mass of the electron in the expression for the

Rydberg energy and the Bohr radius, but the reduced mass. This just sets a different

scale: the formulas for energy etc. still apply, but with a slightly different Rydberg

energy and Bohr radius.

! We can use the information about the H-levels to figure out the periodic system of

elements. Namely, chemical properties of atoms are determined by their electronic

states. In fact, at room temperature the atom is in its ground state, so we “only” have to

figure out the ground states of all atoms in order to understand their chemical behavior.

! Since the electrons do not (or hardly) interact with the neutrons in a nucleus, only the

number of protons, Z, is important.

! The spatial states of the H atom translate to other atoms, too. 1s still means a spatial

wave function with zero nodes and zero ang mom. But the wave function is more

“compressed”. That’s because each electron “sees” a larger charge than just +e. In fact,

at very large distance the electron does see just +e, but close to the nucleus it sees +Ze.

! This also affects the energy levels. They are “stretched out” compared to H. For

example, in Li:
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! In fact, for other atoms with Z>1, we have something like this energy structure:

o Note, e.g., that 4s tends to be below 3d in atoms with Z>>1!

! Now all we have to do is fill up the energy levels with electrons, while using the Pauli

exclusion principle.

! Some subtleties:

o While filling up the 2p levels the electrons first occupy different m states [m=-

1,0,+1], so they still can avoid each other: this is due to their Coulomb repulsion,

not the Pauli effect.

o When forming molecules the electrons do not have to be completely removed from

one atom, but just to a higher excited state.

o The size of the outer orbit also determines whether an atom likes to donate or

accept other atoms’ electrons. For example, Li (Z=3) has a “size” 1.59 A, and Ar ( a

noble gas, with all shells filled) (Z=18)  only 0.66 A! Then, K (Z=19) has radius 2.16

A, and is much more reactive, thanks to its outer electron far away from the

nucleus.
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! So far we considered only single particles, now we will look at the quantum description of

multiple particles. It’s surprising the extension is not quite straightforward. Namely,

there is a difference between distinguishable and indistinguishable or identical particles.

! Moreover, entanglement is a typical quantum property that refers to (quantum)

correlations between 2 or more systems. Entanglement isn’t usually taught in standard

quantum mechanics courses, but in the last 10 years or so, entanglement has become much

more important, for quantum computing, quantum communication, and quantum

cryptography.

! Here we will look at entanglement, the EPR paradox, and Bell inequalities, in addition to

what is in Section 10 of the textbook.

! But let’s start from the beginning: if we have 1 particle, we know it’s described by a wave

function (let’s consider 1-D for simplicity)

! What about 2 particles? Let’s say we have 2 independent and different particles; e.g. an

electron and a proton. Then we have 2 wave functions

! But how could we combine these into a single wave function that describes both particles?

Let’s think about probabilities. Suppose we want to write down a joint probability

distribution for the positions of both the electron and proton. For independent particles

we would simply have a product of two independent probabilities: the probability to find

the electron around x and the proton around x’ is

! Aha! So perhaps we should consider the following the joint wave function describing

electron and proton together:

! The physical meaning of this wave function is fixed by requiring

! Just as for classical probabilities, we can get the probability distribution for 1 particle by

integrating out the other particle:

! 

"(x, t)

! 

"e (x,t)

"p (x,t)

! 

P(x,x ',t) = Pe (x,t)Pp (x',t)

! 

"(x,x ',t) =#e (x, t)# p (x ',t)

! 

P(x,x ',t)dxdx'=|"(x,x',t) |
2
dxdx'

! 

P(x, t)dx = |"(x,x ',t) |2 dx '#[ ]dx
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! We can apply the superposition principle to 2 particles. This means we can also have joint

wave functions of the form (looking here only at a simple example)

! Such a state, whenever it cannot be written as just 1 product term, is an entangled state.

Beware of states like this that look entangled but aren’t:

! There is correlation between the two particles in such a state: when you measure the

electron and find it in psi (phi), then the proton must be in psi (phi), too.

o Because phi and psi are orthogonal, they are eigenstates of some observable with

different eigenvalues (you knew the converse of this!). This means you can

perform a measurement that distinguishes phi from psi.

o One aspect different from classical physics is this: although we have maximum

information about the joint system, we do not know everything about each

particle! After all, we do not have a wave function for each particle individually.

o There are more consequences….we’ll see those later!

! Now consider identical particles, e.g., 2 electrons. In classical physics we could distinguish

2 electrons at all times by just keeping track of where they move. In quantum mechanics

we can no longer do that (or even imagine doing that), and identical particles are truly

indistinguishable. We require then that

! Moreover, because of the symmetry between the two coordinates, we also must have

! 

"(x,x ',t) = a#e (x, t)# p (x ',t) + b$e (x,t)$ p (x',t)

#,$ are orthogonal wave functions

a,b are numbers with | a |2 + |b |2=1
Normalization!

! 
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1

2
[#e (x,t) +$e (x,t)][# p (x ',t) +$ p (x ',t)]

=
1

2
[#e (x, t)# p (x ',t) +$e (x,t)#p (x ',t) +#e (x,t)$ p (x',t) +$e (x, t)$ p (x ',t)]
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P(x,x ',t) = P(x ',x, t)"

|#(x,x ',t) |2=|#(x ',x, t) |2"

#(x,x ',t) = exp(i$)#(x',x,t)

x,x’ refer to coordinates of 2 electrons

However, we can’t really distinguish 

which position is x and which is  x’.

So x,x’ are actually not physical labels

and cannot be measured individually!

! 

"(x,x ',t) = exp(i#)"(x',x,t)$"(x ',x, t) = exp(i#)"(x,x',t)

$ exp(2i#) =1% exp(i#) = ±1
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! Thus there are two possible choices: symmetric (+ sign) wave functions and anti-

symmetric (- sign) wave functions.

! This actually corresponds to bosons (integer spin) and fermions (half-integer spin),

respectively. This is a very hard theorem to prove…(Pauli)..the spin-statistics theorem

! This symmetry does have consequences. Consider 2 particles (either identical, or

distinguishable) in a harmonic oscillator with a Hamiltonian

o So the particles don’t interact with each other

! Suppose we have 2 particles in the ground state (n=0). The wave function would

necessarily be symmetric:

So no difference here between distinguishable and indistinguishable particles

! But now suppose we have particles in the states n=0 and n=1: Then we’d have:

o For distinguishable particles:

o For “symmetric” indistinguishable particles (bosons):

o For “anti-symmetric” indistinguishable particles (fermions):

! Consider the probability to find both particles in the same position, say X,:

o Bosons huddle together

o Fermions avoid each other

o Distinguishable particles don’t care
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n=1(X,t) |2 indistinguishable bosons
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Energies are the same

in the three cases!

These states look entangled

But actually are not, in spite

of what the book says:

The labels x and x’ are 

not physical
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! Examples of some consequences:

o Bose-Einstein condensation (BEC) is an effect relying crucially on this pure

quantum effect. It occurs for bosons only, and is the effect that all (non-

interacting) bosons end up in the ground state if the temperature is sufficiently

low and if the density is sufficiently high.

o It used to be one of the holy grails in physics to actually build a BEC, but since

the first demonstrations in 1995, many BECs have been produced around the

world, including soon(?) here at the UO (Dan Steck).

" The first BEC consisted of Rb atoms cooled to 170nK; pretty cold.

" Note the temperature of the universe is T=2.725K (background radiation)

o Superconductivity is somewhat similar: it’s pairs of electrons with opposite spins

(“Cooper pairs”) that condense and can move without resistance: note two

electrons together have an integer spin and can, under certain conditions, behave

like a boson. Superconductivity can be used, e.g. to levitate magnets or trains:

o Super-fluidity is similar too: liquid He4 flows without friction: it’s BEC but with

interacting particles. This effect does not occur for He3: why not?
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! The effective repulsion of fermions leads to the Pauli exclusion principle, which just says

that 2 electrons can’t occupy the same state. This effect will prevent our sun from

collapsing further than a white dwarf. Phew.

o 1 teaspoon of a white dwarf would weigh 5 tons

o  The same effect but for neutrons is the only thing preventing neutron stars from

collapsing further under their gravitational interaction (heavier stars still do

collapse to a black hole)

! So far we actually left out the spin degree of freedom, which is important in this

context. The wave function of 2 electrons must be anti-symmetric. But an electron has

spin s=1/2, so there are 2 independent spin states (m=+1/2 and m=-1/2).

o Also often called “spin up” and “spin down”

! Since the wave function of an electron is the product of the spatial part and the spin

part,                    we can actually have a symmetric spatial part, provided the spin part is

anti-symmetric (and vice versa).

o So 2 fermions can actually be found in the same place, unlike what we said before,

provided they are in different spin states.

o The spin effect actually explains part of the periodic system of elements: 2

electrons “fill” the lowest “shell”. That’s why He is a noble gas!

! What about more than 2 particles? Fermions still have to be in a state that is anti-

symmetric under the exchange of any pair. So, for example, there is no anti-symmetric

state for the spins of more than 2 electrons (why not?)

! Multiple bosons still have to be in a state that is completely symmetric.

! Thus there still is a big difference between bosons and fermions: at most 2 electrons can

be found in the same location, but N bosons are N! times as likely to be found in the same

location as distinguishable particles, because:

! In fact, a laser can be seen to rely on this effect: photons are bosons, and they like to be

in the same state. Thus, once there are a few photons with a certain frequency and

polarization, many more will be produced inside a laser cavity. The effect of bosons

huddling together is then called stimulate emission. The light from a laser could be viewed

as a Bose-Einstein condensate of photons.

! 

"(x1,x2,...xN ) =
1

N!
#1#2 ...#N

all permutations

$ %

"(X,X,...X) = N!#1(X)#2(X)...#N(X)%

|"(X,X,...X) |2= N!|#1(X)#2(X)...#N(X) |2

! 

" =#(x)$
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! For 2 electrons there are 4=2x2 different spin states in total. One way to distinguish the

4 states is by total spin ang mom (0 or 1) and the z-components of total spin:there is 1

(anti-symmetric) state with zero spin ang mom

and there are three (symmetric) states with total spin ang mom 1

o It’s easy to see which of these 3 states have ms =0, ms =1 or ms =-1.

o In a Cooper pair, which of these 4 spin states is occupied by the 2 electrons?

o And in the ground state of He?

! Now onto entanglement (for distinguishable particles for simplicity). Suppose we have 2

particles: question: could we know the sum of their momenta and their relative position?

! Surprisingly, perhaps, yes because those observables commute

o We used here that observables on different particles commute

o If that were not the case we would have a problem with special relativity

So we can have a state in which we know precisely the total momentum, say zero, and the

distance between the particles, say 1 light year.

! The Einstein-Podolski-Rosen paradox is about such a state. Namely, suppose we measure

on particle 1 its position. Then, we also know the position of particle 2 (and we won’t know

either momentum). On the other hand, if we measure the momentum of particle 1, then we

know also the momentum of particle 2. But EPR argued that any manipulation of particle 1

should not change anything about particle 2. So, it means particle 2 should have both a

well-defined position and a well-defined momentum (even if we don’t know those values

beforehand)  before the measurements on particle 1. But that means that quantum

mechanics is incomplete: QM says one cannot have a state in which both x and p are well

defined. See Physical Review 47, 777 (1935).

! When viewing the quantum state as a state of knowledge, the change to particle 2

because of a measurement on particle 1 is nothing paradoxical. In fact, we can mimic the

same features with classical probability distributions for (x,p) for each particle.

However, this trick does not always work…..
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! It turns out one can prove that quantum mechanics does not allow classical probability

distributions that can mimic all possible measurements, unless one would allow

superluminal communication. The proof of that statement was given by John Bell, by

writing down the Bell inequalities that must be satisfied by any local classical model. But

quantum mechanics violates those inequalities.

! Consider 2 particles, 1 and 2, and consider 2 different measurements A and B on 1 and C

and D on 2.. Assume they have just 2 outcomes, +1 and -1. Denote the outcomes by A1 C2

etc

o E.g., we could be measuring spin ang mom. In 2 different directions, say the z and

x directions. +/-1 would correspond to finding +/-hbar/2

! Perhaps the outcomes of the measurements are probabilistic. In any case, if we assume

all values are well defined, but we just don’t know those values, then we would always

have:

! We write this as the Bell inequality:

! That is, we imagine measuring A or B on particle 1, and, independently, C or D on particle

2, and check for correlations between the two. The inequality does not refer to quantum

mechanics at all! QM can violate this inequality, provided the measurements A and B do

not commute, and C and D do not commute. Why do we need that condition?

! Consider the singlet state of 2 spins:

! We can also write this as

! This just says that no matter in what direction I measure both spins, they will always be

opposite. Indeed, this also follows from the fact the singlet state has zero total angular

momentum: it’s zero in any direction.

o This also means if I measure one spin in some direction n, and find its spin is “up”,

then the other spin must be “down” along n.The wave function “collapsed”.

! 

| (A1 " B1)C2 + (A1 + B1)D2 |# 2

! 

| A
1
C
2
" B

1
C
2

+ A
1
D
2

+ B
1
D
2
|# 2

! 

"
0,0

=
1

2
[#$#% -#%#$]

! 

"0,0 =
1

2
[(cos#$% + sin#$&)(sin#$% ' cos#$&) '

(sin#$% ' cos#$&)(cos#$% + sin#$&)]
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! On particle 2, let’s measure one of these:

! Then, if we would measure C or D on particle 1 we would find perfect anti-correlations:

! Now choose A and B such that

! This actually implies (by inverting these relations) that

! Rewriting the perfect anti-correlations (*) in terms of A.B, we get:

! Now we recognize the terms on the rhs as those appearing in Bell’s inequality:

! But the absolute value of the lhs is supposed to be less than 2! QM violates the Bell

inequality!

o 2sqrt(2) is the maximum violation in QM, in fact.

! What does this mean? Apparently, QM cannot be mimicked by a theory that assumes

quantities have values before I measure them…the alternative is to allow a nonlocal

theory that incorporates superluminal signaling: that is, if I measure particle 1 and it

sends a signal to particle 2 that includes the measurement result, then I can easily violate

Bell’s inequality, too. In fact, I could get 4 instead of just 2sqrt(2).

o So QM allows a violation less than superluminal signaling would allow.

o Still, it allows stronger correlations than classical theory does without signaling

o These correlations can be exploited: E.g. Quantum cryptography is secure only

when one can prove the existence of (effective) entanglement

o Note QM does not allow superluminal signaling with entanglement!
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S " e

x

! 
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1
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2
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1
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2
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! 

ˆ C =
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2
; ˆ D =
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+ e
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e
x
# e

z
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"2 = ˆ C 
1
ˆ C 

2
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1
ˆ D 

2
=

1

2
( ˆ A 

1
" ˆ B 

1
) ˆ C 

2
+ ( ˆ A 

1
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1
) ˆ D 

2

! 

( ˆ A 
1
" ˆ B 

1
) ˆ C 

2
+ ( ˆ A 

1
+ ˆ B 

1
) ˆ D 

2
= "2 2

In general, we can write the operator

for spin in any direction n in the form: S.n.


