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S.J. van Enk

(Dated: June 9, 2008)

(1) [25 points] You have a source that produces pairs of spin-1/2 particles. With proba-

bility p they are in the singlet state,

(| ↑〉| ↓〉 − | ↓〉| ↑〉)/
√

2,

and with probability 1 − p they are in the state (note the i!)

(
√

3| ↑〉| ↓〉 + i| ↓〉| ↑〉)/2.

Unfortunately, that is all you know, and so you have to ascribe a mixed state ρ to

your pairs of spin-1/2 particles.

(a) [10] Write down ρ as a matrix in the basis | ↑↑〉, | ↑↓〉, | ↓↑〉, | ↓↓〉, and make sure

it is a hermitian matrix.

(b) [15] How much entanglement does ρ possess? Calculate the negativity (or the

logarithmic negativity if you want), and check your answer for p = 1.

Answers: (a)

ρ =





















0 0 0 0

0 3/4 − p/4 −p/2 − i
√

3(1 − p)/4 0

0 −p/2 + i
√

3(1 − p)/4 1/4 + p/4 0

0 0 0 0





















This matrix has the property that ρ∗

ij = ρji, so ρ is hermitian.

(b) Taking the partial transpose of ρ can be done in two ways. One way gives

ρΓ =





















0 0 0 −p/2 − i
√

3(1 − p)/4

0 3/4 − p/4 0 0

0 0 1/4 + p/4 0

−p/2 + i
√

3(1 − p)/4 0 0 0





















,

and the other way gives the complex conjugate of this expression. In any case, the

eigenvalues are the same: the two entries on the diagonal give λ1 = 3/4 − p/4 and
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λ2 = 1/4 + p/4, which are both positive. The off-diagonal elements give rise to two

eigenvalues

λ± = ±1

2

√

p2 + 3(1 − p)2/4.

For the negativity we need only the negative eigenvalue λ−, and

N(ρ) = 2|λ−| =
√

p2 + 3(1 − p)2/4

Similarly, the logarithmic negativity is EN(ρ) = log2(1+
√

p2 + 3(1 − p)2/4). For p = 1

both quantities equal 1, as they should for the singlet state.

(2) [40 points] Suppose we have a cubic box with sides L. The potential is zero inside

the box, and infinite outside the box. We put 10 identical and noninteracting spin-1/2

fermions of mass m in the box. Everyone remembers, of course, the eigenenergies for

a single particle in a 1-D box:

En = n2 h̄2π2

2mL2
:= n2E1 for integer n > 0

(a) [15] What is the ground-state energy (expressed in E1) of the system of 10 fermions

in the box? Also, verify there is a 15-fold degeneracy in the ground state.

(b) [15] What are the possible values for the total spin S in the ground state manifold?

(Do not list 15 orthogonal ground states and determine the total spin in each; just

argue which values of S could occur in the 15-D space spanned by those states)

(c) [10] Suppose there is actually a very short-range pair-wise interaction between the

fermions that we describe by a delta-function potential:

V (~x1, ~x2) = λδ(~x1 − ~x2),

with λ a small constant and ~x1 and ~x2 position coordinates of a pair of fermions. We

consider V as a perturbation. Explain how perturbation theory can be valid at all for

this perturbation, even though the potential contains a singularity.

(d) [extra credit*] [5*] Suppose λ > 0 and sufficiently small to allow perturbation

theory to be applicable. What is the total spin of the perturbed ground state?

Answers: (a) There are three quantum numbers: nx, ny, nz. The lowest-energy

single-particle state has (nx, ny, nz) = (1, 1, 1) with energy 3E1. Next, there are

three different (spatial) states which we can indicate by the quantum numbers (1,1,2),
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(1,2,1), and (2,1,1) with energy 6E1; and then there are three different spatial states

(2,2,1), (2,1,2), and (1,2,2) with energy 9E1. We can put 2 fermions in each different

spatial state, because there are 2 different spin states for each fermion. So, we can put

2 fermions in a state with 3E1, 6 can be put in states with 6E1 and the remaining 2

can be put in states with 9E1. Adding up all energies gives

E = (2 × 3 + 6 × 6 + 2 × 9)E1 = 60E1

The last two fermions can be put in any pair of 6 different states (3 spatial states

multiplied by 2 possibilities for the spin), but the order doesn’t matter: so the number

of different ground states is 6 choose 2 =6!/(2!4!)=15

(b) The first 8 fermions are all in pairwise symmetric spatial states, so their spin states

must be pairwise antisymmetric, hence singlet, hence spin-0. The last two fermions

can be in either a triplet state or a singlet state, and so the total spin can be 0 or 1

(c) What counts is matrix elements of the perturbation. A matrix element involves

integrating over spatial coordinates, which gets rid of the delta function. As long as the

matrix elements of V are small compared to energy differences between unperturbed

energy eigenstates, perturbation theory applies.

(d) There is still no choice for the 8 fermions in the single-particle lowest-energy states

[so their total spin is zero, see part (b)], but the last two do have a choice: if they

are in a symmetric spatial state the pertubation will increase the energy, but in an

antisymmetric spatial state the perturbation, to first order at least, does not change

the energy (particles cannot be in the same location in an antisymmetric spatial state).

So, the ground state will have an antisymmetric spatial part and hence a symmetric

spin part: the total spin is S = 1

(3) [25 points] Suppose the electron possesses not just a magnetic moment but also a

small electric dipole moment proportional to its spin ~S. Consider the nonrelativistic

hydrogen atom with the standard Hamiltonian H0 = ~p2/2µ+VCoulomb(~r) (where ~p and

~r are, of course, the momentum and position vectors of the electron, relative to the

nucleus). We add a perturbation of the form

V ∝ ~S · ~E,

where ~E is the electric field. Here we assume there is no external field, so ~E is just
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the Coulomb field of the proton. That makes the perturbation of this form:

V = λ~S · ~r/r3,

with λ a small constant. Consider the unperturbed eigenstates |n, l, ml, ms〉 of H0, L2,

Lz, Sz.

(a) [10] Using degenerate perturbation theory, show that the first-order energy shift

due to V of the degenerate unperturbed ground states |1, 0, 0,±1/2〉 is zero.

(b) [15] Consider the second-order energy shifts of the ground states. One of the terms

that determines this shift is

∆
(2)
++ = −

∑

n′l′m′

l
m′

s

|〈n′, l′, m′

l, m
′

s|V |1, 0, 0, +1/2〉|2
En′l′m′ − E100

.

Which terms in this sum are nonzero? Hint: it may be a good idea to write V in terms

of Sx ± iSy, Sz, and x ± iy, z.

Answers: (a) You need all 4 matrix elements between the two states |1, 0, 0, ms〉 for

ms = ±1/2. But for all ms, m
′

s

〈1, 0, 0, m′

s|V |1, 0, 0, ms〉 = 0

because all of the following matrix elements (involving just the spatial part, not the

spin part) are zero by parity

〈1, 0, 0|~r/r3|1, 0, 0〉 = 0.

(The 1/r3 part is not really relevant, neither here nor in part (b): it’s just a scalar).

All eigenvalues of the zero matrix are zero, of course.

(b) Write ~S · ~r as

~S · ~r =
1

2
(Sx + iSy)(x − iy) +

1

2
(Sx − iSy)(x + iy) + Szz.

The first term raises ms by 1 unit, and lowers ml by 1 unit; the second term lowers

ms by 1 unit and raises ml by 1 unit; the last term leaves both the same. (In other

words, total angular momentum is conserved, consistent with ~S ·~r being a scalar.) All

of the x ± iy, z terms are rank-1 tensors, so they change l by 1. So, starting at l = 0

we must have l′ = 1 . Moreover, m′

s can be equal to ms, but then m′

l must be equal to
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ml: so, m′

s = 1/2, m′

l = 0 is possible; or m′

s can decrease but then ml must increase:

so m′

s = −1/2, m′

l = 1 is possible, too. The quantum number n′ can be any integer

n′ ≥ 2 (since l′ = 1, n′ cannot be equal to 1).

(4) [30+10* points] You have a measurement device that you tested many times by sending

in single spin-1/2 particles in states that you prepared. The device contains 3 light

bulbs of different colors, red (R), blue (B), and green (G). The device always responds

to your spin-1/2 particle by lighting one and only one light bulb. So, the different

measurement outcomes correspond to R, B, and G. You notice that the following

states give the following measurement results:

1. | ↓〉 sometimes lights the green bulb, sometimes the blue one, but never the red

one.

2. (| ↑〉+ | ↓〉)/
√

2 sometimes lights the blue bulb, sometimes the red one, but never

the green one.

3. (2| ↑〉 − | ↓〉)/
√

5 sometimes lights the green bulb, sometimes the red one, but

never the blue one.

(a) [5] Give the simple argument that shows the measurement performed by the device

cannot be a von Neumann measurement on the spin-1/2 system, but must be a POVM.

(b) [10] The POVM consists of three operators of the form Ek = wkΠk, in terms of

projectors Πk—which we label k = G, B, R for the three measurement outcomes—and

in terms of three weights wk. Write down the Πk (this includes, of course, identifying

with which color each projector corresponds).

(c) [15] Determine the weights wk. You can either choose the weights such that
∑

k wkΠk = 11 or (perhaps this is easier) try to make the projectors orthogonal by

extending them to a 3-D Hilbert space, and extracting the weights from those.

(d) [extra credit*] [10*] When you open the device it turns out there is another

spin-1/2 particle (the “ancilla”) inside. You suspect what happens is the following.

The particle you send in interacts with the ancilla in the following way:

(α| ↑〉 + β| ↓〉)| ↑〉 7→ α| ↑〉| ↑〉 + β| ↓〉| ↓〉,

followed by the device performing a von Neumann measurement on the two spins

together. (i) Construct such a measurement consistent with the three “experimental
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results” described above. (ii) Why would repeating this POVM on a given spin-1/2

particle not necessarily lead to the same measurement outcome, even though we just

managed to model it as a von Neumann measurement?

Answers: (a) The measurement has three different outcomes: a von Neumann mea-

surement on a spin-1/2 system can have only two outcomes. 3 > 2 :-)

(b) Since there is always one outcome not occurring at all for the three particular

input states, the three projectors in the 2-D space of the test spin-1/2 particle of the

POVM must be projections onto the states orthogonal to those. For instance,

ΠR = | ↑〉〈↑ |

because the state | ↓〉 never lights the red bulb. Similarly, ΠG = |−〉〈−| with |−〉 =

(| ↑〉 − | ↓〉)/
√

2, and ΠB = |B〉〈B| with |B〉 = (| ↑〉 + 2| ↓〉)/
√

5.

(c) Extending the vectors | ↑〉, |−〉 and |B〉 to a third dimension and making them

orthogonal doesn’t leave much choice (actually, the only choice left is an arbitrary

phase factor in front of the extra basis vector, which I call |2〉 here). We get

|R〉 := | ↑〉 7→ (| ↑ +|2〉)/
√

2,

|G〉 := |−〉 7→ (| ↑〉 − | ↓〉 − |2〉)/
√

3,

and

|B〉 7→ (| ↑ +2| ↓〉 − |2〉)/
√

6.

The weights for the 2-D projectors can then be seen to be

wR = 1/2 and wG = 2/3 and wB = 5/6

(d) (i) Just identify | ↑〉| ↑〉 with | ↑〉, | ↓〉| ↓〉 with | ↓〉, and then for instance | ↑〉| ↓〉
with |2〉. Three von Neumann projectors are onto the states corresponding to those

found in part (c) [with a zero component onto the fourth basis vector | ↓〉| ↑〉], and

the fourth projector projects onto the fourth basis state | ↓〉| ↑〉. Thus,

|R〉 := | ↑〉 7→ (| ↑ +|2〉)/
√

2 7→ (| ↑〉| ↑〉 + | ↑〉| ↓〉)/
√

2

etcetera.

(ii) The ancilla will have to be reset to | ↑〉, and that prevents the same outcome from

having to occur again (it still could occur, but it doesn’t have to).


