MSRI Workshop "Lie Theory"

Berkeley, March 2008
Tensor categories attached to cells in finite Weyl groups

Victor Ostrik
(joint work with Roman Bezrukavnikov and Michael Finkelberg)
math.RT/0605628
$G-$ (semi)simple group
W - Weyl group of G
$S \subset W$ - simple reflections
$l: W \rightarrow \mathbb{Z}_{\geq 0}$ - length function
Hecke algebra H_{W} :
free module over $\mathbb{Z}\left[v, v^{-1}\right]$
basis $T_{x}, x \in W$
$T_{x} T_{y}=T_{x y}$ if $l(x y)=l(x)+l(y)$ (in particular $T_{e}=1$)
$\left(T_{s}-v\right)\left(T_{s}+v^{-1}\right)=0$ for $s \in S$
Kazhdan-Lusztig involution:
$h \mapsto \bar{h}$, automorphism of H_{W}
$\bar{v}=v^{-1}, \overline{T_{s}+v^{-1}}=T_{s}+v^{-1}$
Kazhdan-Lusztig basis:

1) $C_{x} \in T_{x}+\sum_{y \in W} v^{-1} \mathbb{Z}\left[v^{-1}\right] T_{y}$
2) $\overline{C_{x}}=C_{x}$.

Example: $C_{e}=T_{e}=1, C_{s}=T_{s}+v^{-1}$

Structure constants:

$C_{x} C_{y}=\sum_{z \in W} h_{x, y, z} C_{z}, h_{x, y, z} \in \mathbb{Z}\left[v, v^{-1}\right]$
Lusztig's a-function: $a: W \rightarrow \mathbb{Z}_{\geq 0}$,
$h_{x, y, z}=\gamma_{x, y, z} v^{a(z)}+$ lower powers,
$\gamma_{x, y, z} \neq 0$ for some choice of $x, y \in W$.
Asymptotic Hecke ring J_{W} (Lusztig):
free \mathbb{Z}-module with basis $t_{x}, x \in W$
$t_{x} t_{y}=\sum_{z \in W} \gamma_{x, y, z} t_{z}$
Theorem (Lusztig, 1987):

1) $\gamma_{x, y, z} \in \mathbb{Z}_{\geq 0}$
2) J_{W} is associative
3) J_{W} has unit $1=\sum_{d \in \mathcal{D}} t_{d}$

Question (Lusztig): Compute J_{W} explicitly (as a based ring)

Why we care: the ring J_{W} plays a significant role in the classification of 1) complex representations of $G\left(\mathbb{F}_{q}\right)$
2) character sheaves
$S L(2)$-example:
$C_{e}=1$ and $C_{s}^{2}=\left(v+v^{-1}\right) C_{s}$
$h_{e, e, e}=1, h_{e, s, s}=1, h_{s, e, s}=1$
$h_{s, s, s}=v+v^{-1}$
$a(e)=0, a(s)=1$
$t_{e}^{2}=t_{e} ; t_{s}^{2}=t_{s} ; t_{e} t_{s}=t_{s} t_{e}=0$
in particular $1=t_{e}+t_{s}$
$J_{W}=\mathbb{Z} t_{e} \oplus \mathbb{Z} t_{s}$ (direct sum of algebras)
For $A \subset W$ denote $J_{A}=\sum_{x \in A} \mathbb{Z} t_{x} \subset J_{W}$ Two sided cells:
finest partition $W=\sqcup C$ such that
$J_{W}=\bigoplus_{C} J_{C}$ is a direct sum of algebras
Example: $A_{1}: W=e \sqcup s$
$A_{2}, B_{2}, G_{2}: W=e \sqcup w_{0} \sqcup$ (the rest)
Classification of two sided cells: known in all types (Lusztig, Barbasch-Vogan)
Refined Question: for a two sided cell
C compute explicitly J_{C} (as a based ring)

Lusztig's finite group: $\Gamma=\Gamma(C)$
$\Gamma=\{e\}$ in type A
$\Gamma=(\mathbb{Z} / 2 \mathbb{Z})^{k}$ in type $B C D$
$\Gamma=S_{k}, 1 \leq k \leq 5$ in type GFE
Another based ring:
Γ - finite group, Y - finite Γ-set $K_{\Gamma}(Y \times Y)$ - equivariant K-theory
convolution product: $p_{13 *}\left(p_{12}^{*}\left(F_{1}\right) \otimes p_{23}^{*}\left(F_{2}\right)\right)$
where $p_{i j}: Y \times Y \times Y \rightarrow Y \times Y$
basis: irreducible Γ-equivariant bundles
on $Y \times Y$

Lusztig's Conjecture (1987):

For any two sided cell C there exists
a finite $\Gamma(C)$-set $Y=Y(C)$ and an isomorphism of based rings:

$$
J_{C} \simeq K_{\Gamma(C)}(Y \times Y)
$$

Example (Lusztig, 1987):

$\Gamma(C)=\{e\}($ e.g. type $A)$
$K(Y \times Y)=M a t_{|Y|}(\mathbb{Z})$
basis: matrix units
Conjecture holds true

Theorem (BFO):

Lusztig's conjecture holds true in general Examples:
type B_{2}, unique cell with $\Gamma=\mathbb{Z} / 2 \mathbb{Z}$
$Y=\Gamma / \Gamma \sqcup \Gamma /\{e\}$
$|Y|=3,|\Gamma \backslash Y|=2$
type G_{2}, unique cell with $\Gamma=S_{3}$
$Y=S_{3} / S_{3} \sqcup S_{3} / S_{2}$
$|Y|=4,|\Gamma \backslash Y|=2$
type F_{4}, unique cell with $\Gamma=S_{4}$
$Y=\left(S_{4} / S_{4}\right)^{3} \sqcup\left(S_{4} / S_{3}\right)^{3} \sqcup\left(S_{4} / S_{2} \times S_{2}\right)^{4} \sqcup S_{4} / S_{2} \sqcup S_{4} / D_{8}$
$|Y|=54,|\Gamma \backslash Y|=12$
type E_{8}, unique cell with $\Gamma=S_{5}$
$Y=\left(S_{5} / S_{5}\right)^{420} \sqcup\left(S_{5} / S_{4}\right)^{756} \sqcup\left(S_{5} / D_{8}\right)^{168} \sqcup\left(S_{5} / S_{2}\right)^{70} \sqcup$
$\sqcup\left(S_{5} / S_{3} \times S_{2}\right)^{1596} \sqcup\left(S_{5} / S_{2} \times S_{2}\right)^{1092} \sqcup\left(S_{5} / S_{3}\right)^{378}$
$|Y|=83160,|\Gamma \backslash Y|=4480$

Categorification:

based ring $=$ Grothendieck ring $K(\mathcal{C})$
of (additive) monoidal category \mathcal{C}
monoidal category:
category with tensor product, associativity isomorphisms, unit object

Theorem (Lusztig, 1997): $J_{C}=K\left(\mathcal{C}_{C}\right)$

semisimple monoidal category $\mathcal{C}_{C}\left(\right.$ over $\left.\overline{\mathbb{Q}_{l}}\right)$ is defined via truncated convolution of perverse sheaves on the flag variety of G
By definition:
$K_{\Gamma}(Y \times Y)=K\left(\operatorname{Coh}_{\Gamma}(Y \times Y)\right)$
$\operatorname{Coh}_{\Gamma}(Y \times Y)$ (coherent Γ-equivariant sheaves on $Y \times Y$) is semisimple monoidal category (over any field of characteristic 0 , in particular $\left.\overline{\mathbb{Q}_{l}}\right)$
Categorical Lusztig's Conjecture (1997): There is a monoidal equivalence

$$
\mathcal{C}_{C} \simeq \operatorname{Coh}_{\Gamma(C)}(Y \times Y)
$$

Theorem (BFO): Assume two sided cell C is not exceptional. Then categorical Lusztig's Conjecture holds true

Exceptional cells:

there is one (out of 35) in type E_{7} and two (out of 46) in type E_{8}
in all three cases $\Gamma(C)=\mathbb{Z} / 2 \mathbb{Z}$.
The equality $J_{C}=K_{\Gamma}(Y \times Y)$ for excep-
tional C was verified by Lusztig (1987)

$$
Y=\Gamma /\{e\} \sqcup \Gamma /\{e\} \sqcup \cdots
$$

More on exceptional cells.
Unit object of $\mathcal{C}_{C}: 1=\bigoplus_{d \in C \cap \mathcal{D}} \mathbf{1}_{d}$
$\mathbf{1}_{d} \otimes \mathbf{1}_{d}=\mathbf{1}_{d} ; \quad \mathbf{1}_{d} \otimes \mathbf{1}_{d^{\prime}}=0$ if $d \neq d^{\prime}$
Choose $\mathbf{1}_{d}$ (512 of them in smallest exceptional cell)
$\mathbf{1}_{d} \otimes \mathcal{C}_{C} \otimes \mathbf{1}_{d}$ is monoidal subcategory of \mathcal{C}_{C}
For an exceptional cell $\mathbf{1}_{d} \otimes \mathcal{C}_{C} \otimes \mathbf{1}_{d}$ has just two (isomorphism classes of) simple objects: $\mathbf{1}_{d}$ (unit object) and δ such that $\delta \otimes \delta \simeq \mathbf{1}_{d}$

Possible monoidal structures are classified by associativity isomorphism:
$\delta \otimes(\delta \otimes \delta) \rightarrow(\delta \otimes \delta) \otimes \delta$
equivalently, by a class in

$$
H^{3}\left(\mathbb{Z} / 2 \mathbb{Z}, \mathbb{C}^{*}\right)=\mathbb{Z} / 2 \mathbb{Z}
$$

usual structure: same as in $\operatorname{Rep}(\mathbb{Z} / 2 \mathbb{Z})$ unusual (twisted) structure: same as in $\operatorname{Rep}\left(\widehat{s l}_{2}\right)_{1}$
Categorical Lusztig's Conjecture implies

$$
\mathbf{1}_{d} \otimes \mathcal{C}_{C} \otimes \mathbf{1}_{d} \simeq \operatorname{Rep}(\mathbb{Z} / 2 \mathbb{Z})
$$

Theorem (O , in preparation):
For an exceptional two sided cell C we have $\mathbf{1}_{d} \otimes \mathcal{C}_{C} \otimes \mathbf{1}_{d} \simeq \operatorname{Rep}\left(\widehat{s l_{2}}\right)_{1}$

Connection with finite \mathcal{W}-algebras
$e \in \mathfrak{g}=\operatorname{Lie}(G)$ nilpotent element
\mathcal{W}_{e} finite \mathcal{W}-algebra (defined by Premet)
Recall that $Z\left(\mathcal{W}_{e}\right)=Z(\mathfrak{g})=Z(U(\mathfrak{g}))$
Choose a regular integral central character $\chi: Z(\mathfrak{g}) \rightarrow \mathbb{C}=\operatorname{End}\left(\mathbb{C}_{\chi}\right)$
$\mathcal{W}_{e}^{\chi}:=\mathcal{W}_{e} \otimes_{Z(\mathfrak{g})} \mathbb{C}_{\chi}$

Known facts:

(i) (Premet, Losev): \mathcal{W}_{e}^{χ} has nonzero finite dimensional module if and only if e is special
(ii) (Lusztig, Barbasch-Vogan): There is a natural bijection $e \mapsto C(e)$
$\left\{\begin{array}{c}\text { special nilpotent } \\ G-\text { orbits in } \mathfrak{g}\end{array}\right\} \leftrightarrow\left\{\begin{array}{l}\text { two sided } \\ \text { cells in } W\end{array}\right\}$
Refinement of Conjecture by Premet:
Conjecture (Bezrukavnikov, O):
Assume e is special. There is a bijection:
$\left\{\begin{array}{c}\text { simple finite dimensional } \\ \mathcal{W}_{e}^{\chi}-\text { modules }\end{array}\right\} \leftrightarrow Y(C(e))$

