MSRI Workshop "Lie Theory"

Berkeley, March 2008

Tensor categories attached to cells in finite Weyl groups

Victor Ostrik

(joint work with Roman Bezrukavnikov and Michael Finkelberg)

math.RT/0605628

G - (semi) simple group W - Weyl group of G $S \subset W - \text{simple reflections}$ $l: W \to \mathbb{Z}_{\geq 0} - \text{length function}$ Hecke algebra H_W : free module over $\mathbb{Z}[v, v^{-1}]$

basis $T_x, x \in W$ $T_xT_y = T_{xy}$ if l(xy) = l(x) + l(y)(in particular $T_e = 1$) $(T_s - v)(T_s + v^{-1}) = 0$ for $s \in S$

Kazhdan-Lusztig involution:

 $h \mapsto \overline{h}$, automorphism of H_W $\overline{v} = v^{-1}, \overline{T_s + v^{-1}} = T_s + v^{-1}$

Kazhdan-Lusztig basis: 1) $C_x \in T_x + \sum_{y \in W} v^{-1} \mathbb{Z}[v^{-1}] T_y$ 2) $\overline{C_x} = C_x$.

Example: $C_e = T_e = 1, C_s = T_s + v^{-1}$

Structure constants: $C_x C_y = \sum_{z \in W} h_{x,y,z} C_z, \ h_{x,y,z} \in \mathbb{Z}[v, v^{-1}]$ Lusztig's *a*-function: $a: W \to \mathbb{Z}_{\geq 0}$, $h_{x,y,z} = \gamma_{x,y,z} v^{a(z)} + \text{lower powers},$ $\gamma_{x,y,z} \neq 0$ for some choice of $x, y \in W$. free \mathbb{Z} -module with basis $t_x, x \in W$ $t_x t_y = \sum_{z \in W} \gamma_{x,y,z} t_z$ Theorem (Lusztig, 1987):

Asymptotic Hecke ring J_W (Lusztig):

1) $\gamma_{x,y,z} \in \mathbb{Z}_{>0}$

2) J_W is associative

3) J_W has unit $1 = \sum_{d \in \mathcal{D}} t_d$

Question (Lusztig): Compute J_W explicitly (as a based ring)

Why we care: the ring J_W plays a significant role in the classification of 1) complex representations of $G(\mathbb{F}_q)$ 2) character sheaves

SL(2)-example: $C_e = 1$ and $C_s^2 = (v + v^{-1})C_s$ $h_{e,e,e} = 1, h_{e,s,s} = 1, h_{s,e,s} = 1$ $h_{s,s,s} = v + v^{-1}$ a(e) = 0, a(s) = 1 $t_e^2 = t_e; t_s^2 = t_s; t_e t_s = t_s t_e = 0$ in particular $1 = t_e + t_s$ $J_W = \mathbb{Z}t_e \oplus \mathbb{Z}t_s$ (direct sum of algebras) For $A \subset W$ denote $J_A = \sum_{x \in A} \mathbb{Z} t_x \subset J_W$ Two sided cells: finest partition $W = \Box C$ such that $J_W = \bigoplus_C J_C$ is a direct sum of algebras **Example:** A_1 : $W = e \sqcup s$ A_2, B_2, G_2 : $W = e \sqcup w_0 \sqcup$ (the rest) Classification of two sided cells: known in all types (Lusztig, Barbasch-Vogan)

Refined Question: for a two sided cell C compute explicitly J_C (as a based ring)

Lusztig's finite group: $\Gamma = \Gamma(C)$ $\Gamma = \{e\}$ in type A $\Gamma = (\mathbb{Z}/2\mathbb{Z})^k$ in type BCD $\Gamma = S_k, 1 \le k \le 5$ in type GFE

Another based ring:

 Γ – finite group, Y – finite Γ -set $K_{\Gamma}(Y \times Y)$ – equivariant K-theory convolution product: $p_{13*}(p_{12}^*(F_1) \otimes p_{23}^*(F_2))$ where $p_{ij}: Y \times Y \times Y \to Y \times Y$ basis: irreducible Γ -equivariant bundles on $Y \times Y$

Lusztig's Conjecture (1987):

For any two sided cell C there exists a finite $\Gamma(C)$ -set Y = Y(C) and an isomorphism of based rings: $J_C \simeq K_{\Gamma(C)}(Y \times Y)$

Example (Lusztig, 1987): $\Gamma(C) = \{e\}$ (e.g. type A) $K(Y \times Y) = Mat_{|Y|}(\mathbb{Z})$ basis: matrix units Conjecture holds true

Theorem (BFO):

Lusztig's conjecture holds true in general

Examples:

type B_2 , unique cell with $\Gamma = \mathbb{Z}/2\mathbb{Z}$ $Y = \Gamma/\Gamma \sqcup \Gamma/\{e\}$ $|Y| = 3, |\Gamma \setminus Y| = 2$ type G_2 , unique cell with $\Gamma = S_3$ $Y = S_3/S_3 \sqcup S_3/S_2$ $|Y| = 4, |\Gamma \setminus Y| = 2$ type F_4 , unique cell with $\Gamma = S_4$ $Y = (S_4/S_4)^3 \sqcup (S_4/S_3)^3 \sqcup (S_4/S_2 \times S_2)^4 \sqcup S_4/S_2 \sqcup S_4/D_8$ $|Y| = 54, |\Gamma \setminus Y| = 12$ type E_8 , unique cell with $\Gamma = S_5$ $Y = (S_5/S_5)^{420} \sqcup (S_5/S_4)^{756} \sqcup (S_5/D_8)^{168} \sqcup (S_5/S_2)^{70} \sqcup$ $\sqcup (S_5/S_3 \times S_2)^{1596} \sqcup (S_5/S_2 \times S_2)^{1092} \sqcup (S_5/S_3)^{378}$ $|Y| = 83160, |\Gamma \setminus Y| = 4480$

Categorification:

based ring = Grothendieck ring $K(\mathcal{C})$ of (additive) monoidal category \mathcal{C} **monoidal category:**

category with tensor product, associativity isomorphisms, unit object

Theorem (Lusztig, 1997): $J_C = K(\mathcal{C}_C)$

semisimple monoidal category \mathcal{C}_C (over $\overline{\mathbb{Q}_l}$) is defined via truncated convolution of perverse sheaves on the flag variety of G

By definition: $K_{\Gamma}(Y \times Y) = K(Coh_{\Gamma}(Y \times Y))$

 $Coh_{\Gamma}(Y \times Y)$ (coherent Γ -equivariant sheaves on $Y \times Y$) is semisimple monoidal category (over any field of characteristic 0, in particular $\overline{\mathbb{Q}_l}$)

Categorical Lusztig's Conjecture (1997): There is a monoidal equivalence $\mathcal{C}_C \simeq Coh_{\Gamma(C)}(Y \times Y)$ **Theorem (BFO):** Assume two sided cell C is not *exceptional*. Then categorical Lusztig's Conjecture holds true

Exceptional cells:

there is one (out of 35) in type E_7 and two (out of 46) in type E_8 in all three cases $\Gamma(C) = \mathbb{Z}/2\mathbb{Z}$.

The equality $J_C = K_{\Gamma}(Y \times Y)$ for exceptional C was verified by Lusztig (1987)

$$Y = \Gamma/\{e\} \sqcup \Gamma/\{e\} \sqcup \cdots$$

More on exceptional cells.

Unit object of C_C : $\mathbf{1} = \bigoplus_{d \in C \cap D} \mathbf{1}_d$ $\mathbf{1}_d \otimes \mathbf{1}_d = \mathbf{1}_d$; $\mathbf{1}_d \otimes \mathbf{1}_{d'} = 0$ if $d \neq d'$

Choose $\mathbf{1}_d$ (512 of them in smallest exceptional cell)

 $\mathbf{1}_d \otimes \mathcal{C}_C \otimes \mathbf{1}_d$ is monoidal subcategory of \mathcal{C}_C

For an exceptional cell $\mathbf{1}_d \otimes \mathcal{C}_C \otimes \mathbf{1}_d$ has just two (isomorphism classes of) simple objects: $\mathbf{1}_d$ (unit object) and δ such that $\delta \otimes \delta \simeq \mathbf{1}_d$ Possible monoidal structures are classified by associativity isomorphism: $\delta \otimes (\delta \otimes \delta) \rightarrow (\delta \otimes \delta) \otimes \delta$ equivalently, by a class in $H^3(\mathbb{Z}/2\mathbb{Z}, \mathbb{C}^*) = \mathbb{Z}/2\mathbb{Z}$

usual structure: same as in $Rep(\mathbb{Z}/2\mathbb{Z})$ unusual (twisted) structure: same as in $Rep(\widehat{sl}_2)_1$

Categorical Lusztig's Conjecture implies

 $\mathbf{1}_d \otimes \mathcal{C}_C \otimes \mathbf{1}_d \simeq \operatorname{Rep}(\mathbb{Z}/2\mathbb{Z})$

Theorem (O, in preparation):

For an exceptional two sided cell Cwe have $\mathbf{1}_d \otimes \mathcal{C}_C \otimes \mathbf{1}_d \simeq Rep(\widehat{sl}_2)_1$ Connection with finite W-algebras $e \in \mathfrak{g} = \operatorname{Lie}(G)$ nilpotent element \mathcal{W}_e finite \mathcal{W} -algebra (defined by Premet) Recall that $Z(\mathcal{W}_e) = Z(\mathfrak{g}) = Z(U(\mathfrak{g}))$ Choose a **regular integral** central

character $\chi: Z(\mathfrak{g}) \to \mathbb{C} = \operatorname{End}(\mathbb{C}_{\chi})$

 $\mathcal{W}_e^{\chi} := \mathcal{W}_e \otimes_{Z(\mathfrak{g})} \mathbb{C}_{\chi}$

Known facts:

(i) (Premet, Losev): \mathcal{W}_{e}^{χ} has nonzero finite dimensional module if and only if e is special

(ii) (Lusztig, Barbasch-Vogan): There is a natural bijection $e \mapsto C(e)$

 $\{ \begin{array}{c} \text{special nilpotent} \\ G - \text{orbits in } \mathfrak{g} \end{array} \} \leftrightarrow \{ \begin{array}{c} \text{two sided} \\ \text{cells in } W \end{array} \}$

Refinement of Conjecture by Premet: **Conjecture** (Bezrukavnikov, O):

Assume e is special. There is a bijection:

 $\{ \begin{array}{c} \text{simple finite dimensional} \\ \mathcal{W}_e^{\chi} - \text{modules} \end{array} \} \leftrightarrow Y(C(e))$