Sumy-Eugene

14th Ukraine Algebra Conference

Growth in tensor powers

Victor Ostrik

University of Oregon

vostrik@uoregon.edu

July 7

arxiv: 2107.02372, 2301.00885, 2301.09804 (jt with Kevin Coulembier, Pavel Etingof, Daniel Tubbenhauer)

Tensor powers

Setup

$$F$$
 – any field; Γ – any group (or affine group scheme)
 V – any finite dimensional representation of Γ over F
 $V^{\otimes n} = V \otimes V \otimes \ldots \otimes V$ (n times)
 $V^{\otimes n} = \bigoplus_{i=1}^{b_n(V)} W_i$ where W_i are indecomposable Γ -modules

Question: What can we say about sequence $b_n(V)$? e.g. its growth?

Theorem (K. Coulembier, V. O., D. Tubbenhauer)

$$\lim_{n\to\infty}\sqrt[n]{b_n(V)}=\dim(V)$$

Example

 Γ finite, $F = \mathbb{C}$, $M = \max{\chi(1) \mid \chi - \text{ irreducible complex character}}$

$$\frac{1}{M}\dim(V)^n\leq b_n(V)\leq\dim(V^{\otimes n})=\dim(V)^n$$

Finite groups: modular case

Example

 Γ finite, F of characteristic p > 0Then Γ typically has indecomposable representations of arbitrarily large dimension

However Γ has finitely many projective indecomposable modules (PIMs)

Theorem. (R. Bryant - L. Kovacs) Assume V is faithful. Then $V^{\otimes n}$ contain a projective sumand for $n \gg 0$.

Corollary Almost all summands of $V^{\otimes n}$ are projective over the image of Γ in GL(V) (i.e. dimension of all non-projective summands in $V^{\otimes n}$ is less than Kr^n where $r < \dim(V)$ and K > 0).

 $M = \max\{\dim(P) \mid P - \mathsf{PIM} \text{ for image of } \Gamma \text{ in } GL(V)\}$

$$\frac{1}{M}(\dim(V)^n - Kr^n) \le b_n(V) \le \dim(V)^n$$

SL(2): characteristic zero

Example

 $F = \mathbb{C}, \ \Gamma = SL(2), \ V$ – tautological 2-dimensional representation $\operatorname{ch}(V) = q + q^{-1}, \ \operatorname{ch}(V^{\otimes n}) = (q + q^{-1})^n$

$$b_n(V) = \binom{n}{\lfloor \frac{n}{2} \rfloor} \sim \frac{2}{\sqrt{\pi n/2}}$$

Example

 $F = \mathbb{C}$, $\Gamma = SL(2)$, V_2 – irreducible 3-dimensional representation ch $(V_2) = q^2 + 1 + q^{-2}$, ch $(V_2^{\otimes n}) = (q^2 + 1 + q^{-2})^n$

$$b_n(V) = ext{free term of } (q^2 + 1 + q^{-2})^n \sim K rac{3^n}{\sqrt{n}} ext{ (CLT)}$$

Generalization (P. Biane (1993) et al): Γ reductive over $F = \mathbb{C}$: $b_n(V) \sim K \frac{\dim(V)^n}{n^{b/2}}$ where $b = |R_+|$ integer

Theorem (K. Coulembier, V. O., D. Tubbenhauer)

Assume char F = 0 and there is K > 0 such that $b_n(V) \ge K \dim(V)^n$. Then Zariski closure of the image of Γ in GL(V) is a finite group extended by torus. Equivalently, $\Gamma \supset \Gamma_0$ such that $[\Gamma : \Gamma_0] < \infty$ and the image of Γ_0 consists of simultaneously diagonalizable matrices.

Question: What about char F > 0?

Remark: Even for $F = \mathbb{C}$, Γ finite the limit

$$\lim_{n\to\infty}\frac{b_n(V)}{\dim(V)^n}$$

might fail to exist.

Example

 $F = \mathbb{C}, \ \Gamma = D_8, \ V$ - 2-dimensional irreducible $\frac{b_n(V)}{\dim(V)^n} = 1 \text{ or } \frac{1}{2}$ depending on parity of n

SL(2): modular case

Example

char F = p > 0, $\Gamma = SL(2)$, V – tautological 2-dimensional representation $V^{\otimes n}$ - direct sum of tilting SL(2)-modules H. H. Andersen/S. Donkin: combinatorial description of $b_n(V)$ Numerically: $K' \frac{2^n}{n^{\alpha_p}} \leq b_n(V) \leq K'' \frac{2^n}{n^{\alpha_p}}$ for some α_p and K', K'' > 0where $\alpha_2 \approx 0.7075$, $\alpha_3 \approx 0.6845$

Conjecture (P. Etingof):
$$K' \frac{2^n}{n^{\alpha_p}} \le b_n(V) \le K'' \frac{2^n}{n^{\alpha_p}}$$
 for some $K', K'' > 0$

$$\boxed{\alpha_2 = \frac{1}{2} \log_2 \frac{8}{3}} \qquad \boxed{\alpha_3 = \frac{1}{2} \log_3 \frac{9}{2}} \qquad \boxed{\alpha_p = \frac{1}{2} \log_p \frac{2p^2}{p+1}}$$
perhaps $b_n(V) \sim K \frac{2^n}{n^{\alpha_p}}$ for $p \ge 3$

Question: What about other representations of SL(2)? Is the exponent α_p universal? **Question** What about other groups? e.g. SL(3)?

Theorem (K. Coulembier, V. O., D. Tubbenhauer)

For any group Γ , field F, representation V we have

$$\lim_{n\to\infty}\sqrt[n]{b_n(V)}=\dim(V)$$

Step 1: Clearly $b_n(V) \leq \dim(V)^n$ so we need a lower bound for $b_n(V)$ Hence we can assume $\Gamma = GL(V)$ (done if char F = 0!)

Step 2: GL(V)-module $V^{\otimes n}$ is a direct sum of tilting modules,

so it is determined by its character

Difficulty: characters of indecomposable tilting modules are not known for $\dim(V) \ge 3$ (conjecture by Lusztig-Williamson for $\dim(V) = 3$) Use partial information (block of Steinberg module)...

Remark: Γ can be Lie algebra, semigroup, super group or super Lie algebra, quantum group at root of 1

Also V can be an object of a *Tannakian category*

Warning: counterexamples for comodules over Hopf algebras

Other counts: non-projective summands

D. Benson, P. Symonds: Γ finite, char F = p > 0

 $c_n(V) =$ total dimension of <u>non-projective</u> summands in $V^{\otimes n}$

$$\gamma(V) := \lim_{n \to \infty} \sqrt[n]{c_n(V)}$$

• The limit exists! but difficult to compute...

•
$$\gamma(V)$$
 is not necessarily an integer

• $0 \le \gamma(V) \le \dim(V)$, $\gamma(V) = 0 \Leftrightarrow V$ is projective

•
$$\gamma(V) > 0 \Rightarrow \gamma(V) \ge 1$$
, $\gamma(V) > 1 \Rightarrow \gamma(V) \ge \sqrt{2}$

• Conjecture: $\gamma(V)$ is an algebraic integer

•
$$\gamma(V \oplus W) \neq \gamma(V) + \gamma(W)$$
 in general

•
$$\gamma(V\otimes W)
eq \gamma(V)\gamma(W)$$
 in general

Consider $c'_n(V) =$ number of non-projective summands in $V^{\otimes n}$ and define $\gamma'(V) = \lim_{n \to \infty} \sqrt[n]{c'_n(V)}$ • Open True/False question: is $\gamma(V) = \gamma'(V)$ for all V?

Example

 $\Gamma = \mathbb{Z}/5\mathbb{Z}$, p = 5, representation: $1 \mapsto A$, $A^5 = Id \Leftrightarrow (A - Id)^5 = 0$ Indecomposable representations: Jordan cells J_1, J_2, J_3, J_4, J_5

 $J_3: 1 \mapsto \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$ $J_1 \text{ is trivial and the only simple}$ $J_5 \text{ is the only projective}$

Tensor products:
$$J_1 \otimes J_i = J_i$$
 $J_3 \otimes J_3 = J_1 + J_3 + J_5$ $J_3 \otimes J_5 = 3J_5$

Take $V = J_3$ and let $V^{\otimes n} = A_n J_1 + B_n J_3 + C_n J_5$

Then
$$A_{n+1} = B_n$$
 (so $A_n = B_{n-1}$) $B_{n+1} = A_n + B_n$ $C_{n+1} = B_n + 3C_n$

Hence $B_{n+1} = B_{n-1} + B_n = F_n = c'_n(V)$ (Fibonacci number) and $c_n(V) = A_n + 3B_n = B_{n+2} + B_n$ (Lucas number) $\Rightarrow \gamma(V) = \frac{1+\sqrt{5}}{2}$

Exercise. Compute $\gamma(J_2)$ and $\gamma(J_4)$ (of course $\gamma(J_1) = 1$ and $\gamma(J_5) = 0$)

Other counts: non-negligible summands

Assume F is algebraically closed

W – <u>indecomposable</u> representation of a group Γ (or super group scheme)

Definition

W is negligible if dim $(W) = 0 \in F$ (take sdim(W) for super groups) W is non-negligible if dim $(W) \neq 0 \in F$

Remark: More generally, (possibly decomposable) *W* is negligible if every indecomposable summand is negligible Negligible representations form tensor ideal

 $d_n(V) =$ total number of non-negligible summands in $V^{\otimes n}$

$$\delta(V) := \lim_{n \to \infty} \sqrt[n]{d_n(V)}$$

Observation: $d_{n+m}(V) \ge d_n(V)d_m(V)$ and $d_n(V) \le \dim(V)^n$

Fekete's Lemma implies $\delta(V) := \lim_{n \to \infty} \sqrt[n]{d_n(V)}$ exists

Properties of δ

Obvious properties:

- $\delta(V \oplus W) \ge \delta(V) + \delta(W)$
- $\delta(V \otimes W) \geq \delta(V)\delta(W)$
- $\delta(V) = 0 \Leftrightarrow V$ is negligible
- $\delta(V) > 0 \Rightarrow 1 \le \delta(V) \le \dim(V)$

Theorem (K. Coulembier, P. Etingof, V. O.)

1. $\delta(V \oplus W) = \delta(V) + \delta(W)$ and $\delta(V \otimes W) = \delta(V)\delta(W)$. 2. Let $q = q_p = e^{\frac{\pi i}{p}}$ and $[m]_q := \frac{q^m - q^{-m}}{q - q^{-1}} = q^{m-1} + \ldots + q^{1-m}$ for $m \in \mathbb{N}$. Then $\delta(V) =$ linear combination of $[m]_q, 1 \le m \le \frac{p}{2}$ with nonnegative integer coefficients.

Example

For
$$p = 2$$
 or $p = 3$ we say that $\delta(V) \in \mathbb{Z}_{\geq 0}$
For $p = 5$, $\delta(V) = a + b\frac{1+\sqrt{5}}{2}$ where $a, b \in \mathbb{Z}_{\geq 0}$ (since $[2]_{q_5} = \frac{1+\sqrt{5}}{2}$)

Г	p	V	$\dim(V)$	$\gamma(V)$	$\delta(V)$	$d_n(V)$	note
$\mathbb{Z}/5\mathbb{Z}$	5	J_3	3	$\frac{1+\sqrt{5}}{2}$	$\frac{1+\sqrt{5}}{2}$	F _n	$= c'_n(V)$
$\mathbb{Z}/8\mathbb{Z}$	2	J_5	5	3	1	1	
$\mathbb{Z}/9\mathbb{Z}$	3	J_5	5	3	2	$\frac{1}{3}(2^{n+1}+(-1)^n)$	$= d_n(W_{S_3})$

 W_{S_3} - 2-dimensional representation of S_3 over $\mathbb C$

Example

Assume p = 2 and dim(V) = 3 or p = 3 and dim(V) = 2Then exactly one of the following is true: (a) all summands of $V^{\otimes n}$ are non-negligible for all n(b) exactly one summand of each $V^{\otimes n}$ is non-negligible for all n

Define $d'_n(V) = \text{total dimension of non-negligible summands in } V^{\otimes n}$ and $\delta'(V) := \lim_{n \to \infty} \sqrt[n]{d'_n(V)}$

Question: is $\delta(V) = \delta'(V)$ for any V?

Theorem (K. Coulembier, P. Etingof, V. O.)

There are constants K', K'' > 0 such that

$$\mathcal{K}'\delta(V)^n \leq d_n(V) \leq \mathcal{K}''\delta(V)^n$$

In fact we can take ${\cal K}''=1$ (elementary) and we prove that for p>0

$$c(V) = \liminf_{n \to \infty} \frac{d_n(V)}{\delta(V)^n} > 0$$

Conjecture: $c(V) \ge e^{-a_p \delta(V)}$ for some $a_p \in \mathbb{R}_{>0}$. This is true for p = 2 and p = 3 with

$$a_2 = rac{4\ln(3)}{3} \approx 1.464, \ a_3 = 24$$

For $p \ge 5$ we have $c(V) \ge \exp(-a_p \delta(V) - \frac{\pi \ln(2)}{2}(p-2)\delta(V)^2)$

More knowledge about tensor categories is required!

Thanks for listening!