Sumy-Eugene

14th Ukraine Algebra Conference

Growth in tensor powers

Victor Ostrik

University of Oregon
vostrik@uoregon.edu

July 7

arxiv: 2107.02372, 2301.00885, 2301.09804
(jt with Kevin Coulembier, Pavel Etingof, Daniel Tubbenhauer)

Tensor powers

Setup

F - any field; $\quad \Gamma$ - any group (or affine group scheme)
V - any finite dimensional representation of Γ over F
$V^{\otimes n}=V \otimes V \otimes \ldots \otimes V$ (n times $)$
$V^{\otimes n}=\bigoplus_{i=1}^{b_{n}(V)} W_{i}$ where W_{i} are indecomposable Γ-modules
Question: What can we say about sequence $b_{n}(V)$? e.g. its growth?

Theorem (K. Coulembier, V. O., D. Tubbenhauer)

$$
\lim _{n \rightarrow \infty} \sqrt[n]{b_{n}(V)}=\operatorname{dim}(V)
$$

Example

Γ finite, $F=\mathbb{C}, M=\max \{\chi(1) \mid \chi$ - irreducible complex character $\}$

$$
\frac{1}{M} \operatorname{dim}(V)^{n} \leq b_{n}(V) \leq \operatorname{dim}\left(V^{\otimes n}\right)=\operatorname{dim}(V)^{n}
$$

Finite groups: modular case

Example

Γ finite, F of characteristic $p>0$
Then 「 typically has indecomposable representations of arbitrarily large dimension However 「 has finitely many projective indecomposable modules (PIMs)

Theorem. (R. Bryant - L. Kovacs) Assume V is faithful. Then $V^{\otimes n}$ contain a projective sumand for $n \gg 0$.

Corollary Almost all summands of $V^{\otimes n}$ are projective over the image of Γ in $G L(V)$ (i.e. dimension of all non-projective summands in $V^{\otimes n}$ is less than $K r^{n}$ where $r<\operatorname{dim}(V)$ and $\left.K>0\right)$.
$M=\max \{\operatorname{dim}(P) \mid P-$ PIM for image of Γ in $G L(V)\}$

$$
\frac{1}{M}\left(\operatorname{dim}(V)^{n}-K r^{n}\right) \leq b_{n}(V) \leq \operatorname{dim}(V)^{n}
$$

SL(2): characteristic zero

Example

$F=\mathbb{C}, \Gamma=S L(2), V$ - tautological 2-dimensional representation $\operatorname{ch}(V)=q+q^{-1}, \operatorname{ch}\left(V^{\otimes n}\right)=\left(q+q^{-1}\right)^{n}$

$$
b_{n}(V)=\binom{n}{\left[\frac{n}{2}\right]} \sim \frac{2^{n}}{\sqrt{\pi n / 2}}
$$

Example

$F=\mathbb{C}, \Gamma=S L(2), V_{2}$ - irreducible 3-dimensional representation $\operatorname{ch}\left(V_{2}\right)=q^{2}+1+q^{-2}, \operatorname{ch}\left(V_{2}^{\otimes n}\right)=\left(q^{2}+1+q^{-2}\right)^{n}$

$$
b_{n}(V)=\text { free term of }\left(q^{2}+1+q^{-2}\right)^{n} \sim K \frac{3^{n}}{\sqrt{n}}(\text { CLT })
$$

Generalization (P. Biane (1993) et al):
Γ reductive over $F=\mathbb{C}: b_{n}(V) \sim K \frac{\operatorname{dim}(V)^{n}}{n^{b / 2}}$ where $b=\left|R_{+}\right|$integer

Growth knows about 「

Theorem (K. Coulembier, V. O., D. Tubbenhauer)

Assume char $F=0$ and there is $K>0$ such that $b_{n}(V) \geq K \operatorname{dim}(V)^{n}$. Then Zariski closure of the image of Γ in $G L(V)$ is a finite group extended by torus. Equivalently, $\Gamma \supset \Gamma_{0}$ such that $\left[\Gamma: \Gamma_{0}\right]<\infty$ and the image of Γ_{0} consists of simultaneously diagonalizable matrices.

Question: What about char $F>0$?
Remark: Even for $F=\mathbb{C}$, Γ finite the limit

$$
\lim _{n \rightarrow \infty} \frac{b_{n}(V)}{\operatorname{dim}(V)^{n}}
$$

might fail to exist.

Example

$F=\mathbb{C}, \Gamma=D_{8}, V$ - 2-dimensional irreducible $\frac{b_{n}(V)}{\operatorname{dim}(V)^{n}}=1$ or $\frac{1}{2}$ depending on parity of n

SL(2): modular case

Example

char $F=p>0, \Gamma=S L(2), V$ - tautological 2-dimensional representation $V^{\otimes n}$ - direct sum of tilting $S L(2)$-modules
H. H. Andersen/S. Donkin: combinatorial description of $b_{n}(V)$

Numerically: $K^{\prime} \frac{2^{n}}{n^{\alpha}} \leq b_{n}(V) \leq K^{\prime \prime} \frac{2^{n}}{n^{\alpha p}}$ for some α_{p} and $K^{\prime}, K^{\prime \prime}>0$ where $\alpha_{2} \approx 0.7075, \alpha_{3} \approx 0.6845$

Conjecture (P. Etingof): $K^{\prime} \frac{2^{n}}{n^{\alpha p}} \leq b_{n}(V) \leq K^{\prime \prime} \frac{2^{n}}{n^{\alpha p}}$ for some $K^{\prime}, K^{\prime \prime}>0$

$$
\alpha_{2}=\frac{1}{2} \log _{2} \frac{8}{3}
$$

$$
\alpha_{3}=\frac{1}{2} \log _{3} \frac{9}{2}
$$

$$
\alpha_{p}=\frac{1}{2} \log _{p} \frac{2 p^{2}}{p+1}
$$

perhaps $b_{n}(V) \sim K \frac{2^{n}}{n^{\alpha_{\rho}}}$ for $p \geq 3$
Question: What about other representations of $S L(2)$? Is the exponent α_{p} universal?
Question What about other groups? e.g. SL(3)?

Few words about proof

Theorem (K. Coulembier, V. O., D. Tubbenhauer)

For any group Γ, field F, representation V we have

$$
\lim _{n \rightarrow \infty} \sqrt[n]{b_{n}(V)}=\operatorname{dim}(V)
$$

Step 1: Clearly $b_{n}(V) \leq \operatorname{dim}(V)^{n}$ so we need a lower bound for $b_{n}(V)$ Hence we can assume $\Gamma=G L(V)$ (done if char $F=0$!)
Step 2: $G L(V)$-module $V^{\otimes n}$ is a direct sum of tilting modules, so it is determined by its character
Difficulty: characters of indecomposable tilting modules are not known for $\operatorname{dim}(V) \geq 3$ (conjecture by Lusztig-Williamson for $\operatorname{dim}(V)=3$) Use partial information (block of Steinberg module)...
Remark: 「 can be Lie algebra, semigroup, super group or super Lie algebra, quantum group at root of 1
Also V can be an object of a Tannakian category
Warning: counterexamples for comodules over Hopf algebras

Other counts: non-projective summands

D. Benson, P. Symonds: 「 finite, char $F=p>0$
$c_{n}(V)=$ total dimension of non-projective summands in $V^{\otimes n}$

$$
\gamma(V):=\lim _{n \rightarrow \infty} \sqrt[n]{c_{n}(V)}
$$

- The limit exists! but difficult to compute...
- $\gamma(V)$ is not necessarily an integer
- $0 \leq \gamma(V) \leq \operatorname{dim}(V), \gamma(V)=0 \Leftrightarrow V$ is projective
- $\gamma(V)>0 \Rightarrow \gamma(V) \geq 1, \gamma(V)>1 \Rightarrow \gamma(V) \geq \sqrt{2}$
- Conjecture: $\gamma(V)$ is an algebraic integer
- $\gamma(V \oplus W) \neq \gamma(V)+\gamma(W)$ in general
- $\gamma(V \otimes W) \neq \gamma(V) \gamma(W)$ in general

Consider $c_{n}^{\prime}(V)=$ number of non-projective summands in $V^{\otimes n}$ and define $\gamma^{\prime}(V)=\lim _{n \rightarrow \infty} \sqrt[n]{c_{n}^{\prime}(V)}$

- Open True/False question: is $\gamma(V)=\gamma^{\prime}(V)$ for all V ?

Example

$\Gamma=\mathbb{Z} / 5 \mathbb{Z}, p=5$, representation: $1 \mapsto A, A^{5}=\mathrm{Id} \Leftrightarrow(A-\mathrm{Id})^{5}=0$ Indecomposable representations: Jordan cells $J_{1}, J_{2}, J_{3}, J_{4}, J_{5}$
$J_{3}: 1 \mapsto\left(\begin{array}{lll}1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1\end{array}\right)$
J_{1} is trivial and the only simple J_{5} is the only projective

Tensor products: $J_{1} \otimes J_{i}=J_{i} J_{3} \otimes J_{3}=J_{1}+J_{3}+J_{5} J_{3} \otimes J_{5}=3 J_{5}$
Take $V=J_{3}$ and let $V^{\otimes n}=A_{n} J_{1}+B_{n} J_{3}+C_{n} J_{5}$
Then $A_{n+1}=B_{n}$ (so $\left.A_{n}=B_{n-1}\right) B_{n+1}=A_{n}+B_{n} \quad C_{n+1}=B_{n}+3 C_{n}$
Hence $B_{n+1}=B_{n-1}+B_{n}=F_{n}=c_{n}^{\prime}(V)$ (Fibonacci number) and
$c_{n}(V)=A_{n}+3 B_{n}=B_{n+2}+B_{n}($ Lucas number $) \Rightarrow \gamma(V)=\frac{1+\sqrt{5}}{2}$
Exercise. Compute $\gamma\left(J_{2}\right)$ and $\gamma\left(J_{4}\right)$ (of course $\gamma\left(J_{1}\right)=1$ and $\gamma\left(J_{5}\right)=0$)

Other counts: non-negligible summands

Assume F is algebraically closed
W - indecomposable representation of a group 「 (or super group scheme)

Definition

W is negligible if $\operatorname{dim}(W)=0 \in F$ (take $\operatorname{sdim}(W)$ for super groups) W is non-negligible if $\operatorname{dim}(W) \neq 0 \in F$

Remark: More generally, (possibly decomposable) W is negligible if every indecomposable summand is negligible
Negligible representations form tensor ideal
$d_{n}(V)=$ total number of non-negligible summands in $V^{\otimes n}$

$$
\delta(V):=\lim _{n \rightarrow \infty} \sqrt[n]{d_{n}(V)}
$$

Observation: $d_{n+m}(V) \geq d_{n}(V) d_{m}(V)$ and $d_{n}(V) \leq \operatorname{dim}(V)^{n}$
Fekete's Lemma implies $\delta(V):=\lim _{n \rightarrow \infty} \sqrt[n]{d_{n}(V)}$ exists

Properties of δ

Obvious properties:

- $\delta(V \oplus W) \geq \delta(V)+\delta(W)$
- $\delta(V \otimes W) \geq \delta(V) \delta(W)$
- $\delta(V)=0 \Leftrightarrow V$ is negligible
- $\delta(V)>0 \Rightarrow 1 \leq \delta(V) \leq \operatorname{dim}(V)$

Theorem (K. Coulembier, P. Etingof, V. O.)

1. $\delta(V \oplus W)=\delta(V)+\delta(W)$ and $\delta(V \otimes W)=\delta(V) \delta(W)$.
2. Let $q=q_{p}=e^{\frac{\pi i}{p}}$ and $[m]_{q}:=\frac{q^{m}-q^{-m}}{q-q^{-1}}=q^{m-1}+\ldots+q^{1-m}$ for $m \in \mathbb{N}$. Then $\delta(V)=$ linear combination of $[m]_{q}, 1 \leq m \leq \frac{p}{2}$ with nonnegative integer coefficients.

Example

For $p=2$ or $p=3$ we say that $\delta(V) \in \mathbb{Z}_{\geq 0}$
For $p=5, \delta(V)=a+b \frac{1+\sqrt{5}}{2}$ where $a, b \in \mathbb{Z}_{\geq 0}\left(\right.$ since $\left.[2]_{q_{5}}=\frac{1+\sqrt{5}}{2}\right)$

Example

Γ	p	V	$\operatorname{dim}(V)$	$\gamma(V)$	$\delta(V)$	$d_{n}(V)$	note
$\mathbb{Z} / 5 \mathbb{Z}$	5	J_{3}	3	$\frac{1+\sqrt{5}}{2}$	$\frac{1+\sqrt{5}}{2}$	F_{n}	$=c_{n}^{\prime}(V)$
$\mathbb{Z} / 8 \mathbb{Z}$	2	J_{5}	5	3	1	1	
$\mathbb{Z} / 9 \mathbb{Z}$	3	J_{5}	5	3	2	$\frac{1}{3}\left(2^{n+1}+(-1)^{n}\right)$	$=d_{n}\left(W_{S_{3}}\right)$

$W_{S_{3}}$ - 2-dimensional representation of S_{3} over \mathbb{C}

Example

Assume $p=2$ and $\operatorname{dim}(V)=3$ or $p=3$ and $\operatorname{dim}(V)=2$
Then exactly one of the following is true:
(a) all summands of $V^{\otimes n}$ are non-negligible for all n
(b) exactly one summand of each $V^{\otimes n}$ is non-negligible for all n

Define $d_{n}^{\prime}(V)=$ total dimension of non-negligible summands in $V^{\otimes n}$ and $\delta^{\prime}(V):=\lim _{n \rightarrow \infty} \sqrt[n]{d_{n}^{\prime}(V)}$

Question: is $\delta(V)=\delta^{\prime}(V)$ for any V ?

More

Theorem (K. Coulembier, P. Etingof, V. O.)

There are constants $K^{\prime}, K^{\prime \prime}>0$ such that

$$
K^{\prime} \delta(V)^{n} \leq d_{n}(V) \leq K^{\prime \prime} \delta(V)^{n}
$$

In fact we can take $K^{\prime \prime}=1$ (elementary) and we prove that for $p>0$

$$
c(V)=\liminf _{n \rightarrow \infty} \frac{d_{n}(V)}{\delta(V)^{n}}>0
$$

Conjecture: $c(V) \geq e^{-a_{p} \delta(V)}$ for some $a_{p} \in \mathbb{R}_{>0}$.
This is true for $p=2$ and $p=3$ with

$$
a_{2}=\frac{4 \ln (3)}{3} \approx 1.464, \quad a_{3}=24
$$

For $p \geq 5$ we have $c(V) \geq \exp \left(-a_{p} \delta(V)-\frac{\pi \ln (2)}{2}(p-2) \delta(V)^{2}\right)$
More knowledge about tensor categories is required!

Thanks for listening!

