MSRI-Eugene

Thursday Online Seminar

Incompressible symmetric tensor categories

Victor Ostrik

University of Oregon and MSRI

vostrik@uoregon.edu

April 23

arxiv: 2003.10499 (jt with Dave Benson and Pavel Etingof)

Representation categories

Base field: $k = \overline{k}$ Given a (finite) group G we can form Rep(G) = {all finite dimensional representations of G}

What kind of mathematical object is Rep(G)?

- $\operatorname{Rep}(G)$ abelian category
- $\operatorname{Rep}(G)$ has a bifunctor \otimes
- \otimes is associative, commutative, unital \leftarrow structures
- we have duality $X^* \leftarrow \text{property of } \otimes \text{ and associativity}$
- we have forgetful tensor functor $\operatorname{Rep}(G) o \operatorname{Vec}$

Thus $\operatorname{Rep}(G)$ is a <u>rigid symmetric tensor category</u> equipped with a (symmetric) tensor functor to Vec

Tannakian theory

Pre-Tannakian categories

 $\mathcal{C}: \ k-\text{linear rigid symmetric } \otimes \text{ category satisfying}$

- $\bullet \ \mathcal{C}$ is abelian
- dim Hom $(X, Y) < \infty$
- length $(X) < \infty$
- 1 is simple

Definition

Fiber functor: exact symmetric \otimes functor $C \rightarrow Vec$

 ${\mathcal C}$ is Tannakian if it is pre-Tannakian and admits a fiber functor.

Theorem (Grothendieck, Saavedra Rivano, Deligne-Milne)

Assume C is Tannakian. Then C = Rep(G) for some (unique) affine group scheme G.

Example

sVec – pre-Tannakian but not Tannakian Reminder: sVec = Rep($\mathbb{Z}/2$) but with modified commutativity constraint

Definition

super fiber functor: exact symmetric \otimes functor $C \rightarrow$ sVec C is super Tannakian: pre-Tannakian and admits a super fiber functor.

Example

G affine super group scheme (= super commutative Hopf algebra) then Rep(*G*) is super Tannakian More generally: $z \in G$, $z^2 = 1$, Ad(z) =parity automorphism of *G* Rep(*G*, *z*) = { objects *X* of Rep(*G*) such that the action of *z* is the parity automorphism of *X*} then Rep(*G*, *z*) is super Tannakian

Theorem (Deligne)

Assume C is super Tannakian. Then C = Rep(G, z) for some affine super group scheme G and z as above.

Generalization

Let $F : \mathcal{C} \to \mathcal{D}$ be an exact symmetric \otimes functor. Then $\mathcal{C} = \operatorname{Rep}(G, \pi)$ where G is an affine group scheme in \mathcal{D} π is the fundamental group of \mathcal{D} In other words, \mathcal{C} can be expressed in terms of "group theory in \mathcal{D} ".

Question: What are categories which can't be expressed in terms of "group theory" in smaller categories? Equivalently, which categories do not admit \otimes functors to smaller categories?

Surjective functors

Victor Ostrik (U of O)

Exact \otimes functor $F : \mathcal{C} \to \mathcal{D}$ is surjective if any object of \mathcal{D} is a subquotient of F(X)Any functor $F : \mathcal{C} \to \mathcal{D}$ factorizes $\mathcal{C} \to \text{Im}(F) \to \mathcal{D}$ where $\mathcal{C} \to \text{Im}(F)$ is surjective and $\text{Im}(F) \to \mathcal{D}$ is an embedding.

Definition

A pre-Tannakian C is incompressible if any surjective \otimes functor $F : C \to D$ is an equivalence for any pre-Tannakian D

Equivalently, C is incompressible if any exact \otimes functor $F : C \to D$ is an embedding

Examp	ole				
Vec	sVec				
Any mo	ore examples?				

Incompressible categories	April 23
---------------------------	----------

6 / 17

Characteristic zero

Definition

We say that C is of sub-exponential growth if for any $X \in C$ there is $a_X \in \mathbb{R}$ such that $\operatorname{length}(X^{\otimes n}) \leq a_X^n$.

Theorem (Deligne)

Assume char k = 0 and let C be pre-Tannakian of sub-exponential growth. Then C is super Tannakian. In particular, Vec and sVec are the only incompressible categories of sub-exponential growth.

Example

<u>Deligne categories</u> $\operatorname{Rep}(GL_t)$, $\operatorname{Rep}(O_t)$, $\operatorname{Rep}(S_t)$ $(t \in k)$ are categories of super-exponential growth.

They typically admit surjective functors like $\operatorname{Rep}(S_t) \to \operatorname{Rep}(S_{t-1})$.

Conjecture: No more incompressible categories in characteristic zero.

Semisimplification

Let \mathcal{T} be a rigid symmetric monoidal category (perhaps non-abelian)

Negligible morphisms

We say that $f : X \to Y$ is negligible if for any $g : Y \to X$ we have $\operatorname{Tr}(fg) = 0$. Negligible morphisms form a \otimes ideal \mathcal{N} . Define $\overline{\mathcal{T}}$: the same objects as in \mathcal{T} but $\operatorname{Hom}_{\overline{\mathcal{T}}}(X, Y) = \operatorname{Hom}_{\mathcal{T}}(X, Y)/\mathcal{N}$. $\overline{\mathcal{T}}$ is again rigid symmetric monoidal category

Theorem (U. Jannsen)

Assume dim $Hom(X, Y) < \infty$ and any nilpotent endomorphism in T has trace zero. Then \overline{T} is semisimple (and so abelian). Moreover

Irreducibles of $\overline{\mathcal{T}} \leftrightarrow$ Indecomposables of \mathcal{T} of nonzero dimension.

Remark: assume $F : \mathcal{T} \to \mathcal{C}$ is a \otimes functor to abelian \mathcal{C} . Then any nilpotent endomorphism in \mathcal{T} has trace zero.

Semisimple Verlinde categories

Assume char k = p > 0.

S. Gelfand-Kazhdan and Georgiev-Mathieu

G - semisimple group, e.g. $G = SL_n$ Let $\mathcal{T} = \{ \text{ tilting } G - \text{modules } \}$ Then $Ver(G) := \overline{\mathcal{T}}$ is a nice \otimes category; it has finitely many irreducibles provided $p \ge \text{Coxeter number of } G \text{ (e.g. } h(SL_n) = n)$

Example

Ver_p := Ver(*SL*₂) Simple objects $L_1 = 1, L_2, ..., L_{p-1}$ $L_2 \otimes L_i = L_{i-1} \oplus L_{i+1}$ with convention $L_0 = L_p = 0$ This implies: $L_{p-1} \otimes L_{p-1} = 1$ and $\langle 1, L_{p-1} \rangle =$ sVec. For p = 5: $L_3 \otimes L_3 = 1 \oplus L_3$ Fibonacci category Fib Ver₂ = Vec; Ver₃ = sVec; Ver₅ = Fib \boxtimes sVec

Alternatively Ver_p = semisimplification of $\operatorname{Rep}(\mathbb{Z}/p)$

Fact: the category Ver_p is incompressible.

Theorem (V.O.)

For any pre-Tannakian C which is semisimple with finitely many irreducibles there exists a \otimes functor $C \rightarrow Ver_p$. In particular there is no other incompressible fusion categories.

Conjecture: there are no other semisimple incompressible categories (at least of sub-exponential growth). What about non-semisimple examples?

Example

For p=2 Venkatesh constructed an example $\mathcal V$ by modifying the commutativity constraint in $\operatorname{Rep}(\mathbb Z/2)$

Benson-Etingof

p = 2 sequence $\mathcal{C}_0 = \mathsf{Vec} \subset \mathcal{C}_1 = \mathcal{V} \subset \mathcal{C}_2 = \mathcal{T}(SL_2)/\mathcal{I}_2 \subset \mathcal{C}_3 \subset \dots$

Technology: Hopf algebras (in categories) and graded extensions

More on tilting modules for SL_2

 $V - \text{tautological 2-dimensional representation of } SL_2$ $\mathcal{T}(SL_2) := \text{additive} \otimes \text{category generated by } V$ $\{\text{indecomposables of } \mathcal{T}(SL_2)\} = \{\text{indecomposable summands of } V^{\otimes n}\}$ **Fact:** indecomposables are classified by highest weight Thus we have $T_0 = \mathbf{1}, T_1 = V, T_2, T_3, \dots$ Steinberg modules: $T_0, T_{p-1}, T_{p^2-1}, \dots, \text{St}_r = T_{p^r-1}, \dots$ Each St_r generates a (thick) tensor ideal $\mathcal{P}_r = \langle T_{p^r-1}, T_{p^r}, T_{p^r+1}, \dots \rangle$ Each thick tensor ideal above gives tensor ideal $\mathcal{I}_r: \mathcal{I}_0 \supset \mathcal{I}_1 \supset \mathcal{I}_2 \supset \dots$ **Fact:** Any tensor ideal in $\mathcal{T}(SL_2)$ is one of \mathcal{I}_r

Quotients

Define $\mathcal{T}_{p,r} := \mathcal{T}(SL_2)/\mathcal{I}_r$, e.g. $\mathcal{T}_{p,1} = \operatorname{Ver}_p$ $\mathcal{T}_{p,r}$ is non-semisimple and <u>non-abelian</u> for r > 1 (except r = 2 and p = 2) $\mathcal{T}_{p,r}$ contains tensor ideal \mathcal{P}_{r-1} (and $\mathcal{I}_{r-1} = \mathcal{I}_{r-1}/\mathcal{I}_r$)

Main Theorem

Observation: (Benson-Etingof): their category C_{2r} contains $\mathcal{T}_{2,r}$; { the ideal \mathcal{P}_{r-1} } = { subcategory of projective objects in C_{2r} }

Theorem (Benson-Etingof-O., Coulembier)

There exists a unique pre-Tannakian category Ver_{p^n} containing $\mathcal{T}_{p,n}$ and such that \mathcal{P}_{n-1} coincides with the ideal of projective objects. The category Ver_{p^n} is incompressible.

Split morphisms

A morphism (in additive category) $f : X \to Y$ is split if it is projection to a direct summand followed by an inclusion of a direct summand

Example

If X and Y are indecomposable, f is split \Leftrightarrow f is an isomorphism or f = 0

Exercise. Let P be a projective object and $f : X \to Y$ be any morphism Then $id_P \otimes f : P \otimes X \to P \otimes Y$ is split

Splitting ideals

Let \mathcal{T} be a rigid symmetric monoidal category (perhaps non-abelian), dim Hom $(X, Y) < \infty$ Let $\mathcal{P} \subset \mathcal{T}$ be a thick tensor ideal We say that \mathcal{P} is splitting ideal if for any morphism $f : X \to Y$ in \mathcal{T} and $P \in \mathcal{P}$ the morphism id_P \otimes f is split

General construction

Given splitting ideal $\mathcal{P} \subset \mathcal{T}$ as above we construct abelian rigid tensor category $\mathcal{C} \supset \mathcal{P}$ such that \mathcal{P} is subcategory of projective objects Hint on construction of \mathcal{C} : complexes of objects of \mathcal{P} Some challenges: What is unit object of \mathcal{C} ? Why \mathcal{C} is rigid?

Key Lemma

The ideal $\mathcal{P}_{n-1} \subset \mathcal{T}_{p,n}$ is splitting

Wanted: more examples of splitting tensor ideals!

Properties of Ver_pⁿ

Projectives and Cartan matrix

Projective objects: T_i with $p^{n-1} - 1 \le i < p^n - 1$; $\# = p^n - p^{n-1}$ We set $P_i = T_{i-1}$ where $i = [i_1 i_2 \dots i_n]_p$ has precisely n digits $(i_1 \ne 0!)$ Cartan matrix $C_{ij} := \dim \operatorname{Hom}(P_i, P_j)$ Negative digits game: make some digits negative $[23045]_p \rightsquigarrow 2(-3)0(-4)5 = 2p^4 - 3p^3 - 4p + 5$ Descendants of i: all positive numbers you get in this way E.g. $[23045]_p$ has $2^3 = 8$ descendants <u>Tubbenhauer-Wedrich</u>: $C_{ij} = |\{\text{descendants of } i\} \cap \{\text{descendants of } j\}|$ **Exercise:** $C_{ij} = 0$ or power of 2 **Exercise:** det $C_{ij} = \text{power of } p$

Embeddings

We have $\operatorname{Ver}_p \subset \operatorname{Ver}_{p^2} \subset \operatorname{Ver}_{p^3} \subset \ldots$ For p > 2, $\operatorname{Ver}_{p^n} = \operatorname{Ver}_{p^n}^+ \boxtimes \operatorname{sVec}$

Grothendieck ring (p > 2)

 $K(\operatorname{Ver}_{p^n}^+) = \mathbb{Z}[\xi + \xi^{-1}]$ where ξ is a primitive p^n -th root of 1 $K(\operatorname{Ver}_{p^n}) = \mathbb{Z}[\xi + \xi^{-1}][\mathbb{Z}/2]$

Simples

Some simples: $T_0 = \mathbf{1}, T_1, \dots, T_{p-1}$ are simples $T_i^{[n]}$ in $\operatorname{Ver}_{p^n}(n > 1)$ <u>Tensor Product Theorem</u>: for $i = [i_1 \dots i_n]$ with $i_1 \neq p-1$ $L_i = T_{i_i}^{[1]} \otimes T_{i_2}^{[2]} \dots T_i^{[n]}$ is simple (and this is a complete list) $P(L_i) = P_s$ where $s = [(i_1 + 1)i_2^* \dots i_n^*]$ where $i^* = p - 1 - i_n^*$ Extensions (p > 2): Ext¹ $(L_i, L_i) = 0$ or k $Ext^{1}(L_{i}, L_{i}) \neq 0 \Leftrightarrow i$ and j differ only in two consecutive digits, of which the first ones differ by 1 and the second ones add up to p-2Blocks: n(p-1) of them of sizes $1, p-1, p^2 - p, ..., p^{n-1} - p^{n-2}$ Ver_{p^n} is a mod p reduction of semisimple category in characteristic zero **Corollary:** $C = DD^T$ where D is the decomposition matrix

Module categories

Question 1. What are exact module categories over Ver_{p^n} ?

Extensions

Question 2. What is $Ext^{\bullet}(1, 1)$?

More examples?

Question 3. Are there any other incompressible categories?

Universality

Let $\operatorname{Ver}_{p^{\infty}} = \bigcup_{n} \operatorname{Ver}_{p^{n}}$ Let \mathcal{C} be a pre-Tannakian category of sub-exponential growth **Question 4.** Is there an exact tensor functor $\mathcal{C} \to \operatorname{Ver}_{p^{\infty}}$? Thanks for listening!