MSRI-Eugene
 Thursday Online Seminar

Incompressible symmetric tensor categories

Victor Ostrik

University of Oregon and MSRI
vostrik@uoregon.edu

April 23

arxiv: 2003.10499
(jt with Dave Benson and Pavel Etingof)

Symmetric tensor categories

Representation categories

Base field: $k=\bar{k}$
Given a (finite) group G we can form $\operatorname{Rep}(G)=\{$ all finite dimensional representations of $G\}$

What kind of mathematical object is $\operatorname{Rep}(G)$?

- $\operatorname{Rep}(G)$ - abelian category
- $\operatorname{Rep}(G)$ has a bifunctor \otimes
- \otimes is associative, commutative, unital \leftarrow structures
- we have duality $X^{*} \leftarrow$ property of \otimes and associativity
- we have forgetful tensor functor $\operatorname{Rep}(G) \rightarrow$ Vec

Thus $\operatorname{Rep}(G)$ is a rigid symmetric tensor category equipped with a (symmetric) tensor functor to Vec

Tannakian theory

Pre-Tannakian categories

$\mathcal{C}: k$-linear rigid symmetric \otimes category satisfying

- \mathcal{C} is abelian
- $\operatorname{dim} \operatorname{Hom}(X, Y)<\infty$
- length $(X)<\infty$
- 1 is simple

Definition

Fiber functor: exact symmetric \otimes functor $\mathcal{C} \rightarrow$ Vec \mathcal{C} is Tannakian if it is pre-Tannakian and admits a fiber functor.

Theorem (Grothendieck, Saavedra Rivano, Deligne-Milne)

Assume \mathcal{C} is Tannakian. Then $\mathcal{C}=\operatorname{Rep}(G)$ for some (unique) affine group scheme G.

super Tannakian categories

Example

sVec - pre-Tannakian but not Tannakian
Reminder: sVec $=\operatorname{Rep}(\mathbb{Z} / 2)$ but with modified commutativity constraint

Definition

super fiber functor: exact symmetric \otimes functor $\mathcal{C} \rightarrow s$ Vec \mathcal{C} is super Tannakian: pre-Tannakian and admits a super fiber functor.

Example

G affine super group scheme (= super commutative Hopf algebra) then $\operatorname{Rep}(G)$ is super Tannakian
More generally: $z \in G, z^{2}=1, \operatorname{Ad}(z)=$ parity automorphism of G $\operatorname{Rep}(G, z)=\{$ objects X of $\operatorname{Rep}(G)$ such that the action of z is the parity automorphism of X \}
then $\operatorname{Rep}(G, z)$ is super Tannakian

super Tannakian theory and generalization

Theorem (Deligne)

Assume \mathcal{C} is super Tannakian. Then $\mathcal{C}=\operatorname{Rep}(G, z)$ for some affine super group scheme G and z as above.

Generalization

Let $F: \mathcal{C} \rightarrow \mathcal{D}$ be an exact symmetric \otimes functor.
Then $\mathcal{C}=\operatorname{Rep}(G, \pi)$ where G is an affine group scheme in \mathcal{D}
π is the fundamental group of \mathcal{D}
In other words, \mathcal{C} can be expressed in terms of "group theory in \mathcal{D} ".

Question: What are categories which can't be expressed in terms of "group theory" in smaller categories?
Equivalently, which categories do not admit \otimes functors to smaller categories?

Incompressible categories

```
Surjective functors
Exact \otimes functor F:\mathcal{C}->\mathcal{D}\mathrm{ is surjective if any object of }\mathcal{D}\mathrm{ is a}
subquotient of }F(X
Any functor F:\mathcal{C}->\mathcal{D}\mathrm{ factorizes }\mathcal{C}->\operatorname{Im}(F)->\mathcal{D}\mathrm{ where }\mathcal{C}->\operatorname{Im}(F)\mathrm{ is}
surjective and }\operatorname{Im}(F)->\mathcal{D}\mathrm{ is an embedding.
```


Definition

A pre-Tannakian \mathcal{C} is incompressible if any surjective \otimes functor $F: \mathcal{C} \rightarrow \mathcal{D}$ is an equivalence for any pre-Tannakian \mathcal{D}

Equivalently, \mathcal{C} is incompressible if any exact \otimes functor $F: \mathcal{C} \rightarrow \mathcal{D}$ is an embedding

Example

Vec sVec
Any more examples?

Characteristic zero

Definition

We say that \mathcal{C} is of sub-exponential growth if for any $X \in \mathcal{C}$ there is $a_{X} \in \mathbb{R}$ such that length $\left(X^{\otimes n}\right) \leq a_{X}^{n}$.

Theorem (Deligne)

Assume char $k=0$ and let \mathcal{C} be pre-Tannakian of sub-exponential growth. Then \mathcal{C} is super Tannakian. In particular, Vec and sVec are the only incompressible categories of sub-exponential growth.

Example

Deligne categories $\operatorname{Rep}\left(G L_{t}\right), \operatorname{Rep}\left(O_{t}\right), \operatorname{Rep}\left(S_{t}\right)(t \in k)$ are categories of super-exponential growth.
They typically admit surjective functors like $\operatorname{Rep}\left(S_{t}\right) \rightarrow \operatorname{Rep}\left(S_{t-1}\right)$.
Conjecture: No more incompressible categories in characteristic zero.

Semisimplification

Let \mathcal{T} be a rigid symmetric monoidal category (perhaps non-abelian)

Negligible morphisms

We say that $f: X \rightarrow Y$ is negligible if for any $g: Y \rightarrow X$ we have $\operatorname{Tr}(f g)=0$.
Negligible morphisms form a \otimes ideal \mathcal{N}.
Define $\overline{\mathcal{T}}$: the same objects as in \mathcal{T} but $\operatorname{Hom}_{\overline{\mathcal{T}}}(X, Y)=\operatorname{Hom}_{\mathcal{T}}(X, Y) / \mathcal{N}$. $\overline{\mathcal{T}}$ is again rigid symmetric monoidal category

Theorem (U. Jannsen)

Assume $\operatorname{dim} \operatorname{Hom}(X, Y)<\infty$ and any nilpotent endomorphism in \mathcal{T} has trace zero. Then $\overline{\mathcal{T}}$ is semisimple (and so abelian). Moreover

Irreducibles of $\overline{\mathcal{T}} \leftrightarrow$ Indecomposables of \mathcal{T} of nonzero dimension.
Remark: assume $F: \mathcal{T} \rightarrow \mathcal{C}$ is a \otimes functor to abelian \mathcal{C}. Then any nilpotent endomorphism in \mathcal{T} has trace zero.

Semisimple Verlinde categories

Assume char $k=p>0$.

S. Gelfand-Kazhdan and Georgiev-Mathieu

$G-$ semisimple group, e.g. $G=S L_{n}$
Let $\mathcal{T}=\{$ tilting G-modules $\}$
Then $\operatorname{Ver}(G):=\overline{\mathcal{T}}$ is a nice \otimes category; it has finitely many irreducibles provided $p \geq$ Coxeter number of G (e.g. $h\left(S L_{n}\right)=n$)

Example

$\operatorname{Ver}_{p}:=\operatorname{Ver}\left(S L_{2}\right)$
Simple objects $L_{1}=\mathbf{1}, L_{2}, \ldots, L_{p-1}$
$L_{2} \otimes L_{i}=L_{i-1} \oplus L_{i+1}$ with convention $L_{0}=L_{p}=0$
This implies: $L_{p-1} \otimes L_{p-1}=\mathbf{1}$ and $\left\langle\mathbf{1}, L_{p-1}\right\rangle=\mathrm{sVec}$.
For $p=5: L_{3} \otimes L_{3}=\mathbf{1} \oplus L_{3}$ Fibonacci category Fib
Ver $_{2}=$ Vec; Ver $_{3}=\mathrm{sVec} ;$ Ver $_{5}=$ Fib $\boxtimes \mathrm{sVec}$
Alternatively $\operatorname{Ver}_{p}=$ semisimplification of $\operatorname{Rep}(\mathbb{Z} / p)$

Fact: the category Ver_{p} is incompressible.

Theorem (V.O.)

For any pre-Tannakian \mathcal{C} which is semisimple with finitely many irreducibles there exists a \otimes functor $\mathcal{C} \rightarrow$ Verp $_{p}$. In particular there is no other incompressible fusion categories.

Conjecture: there are no other semisimple incompressible categories (at least of sub-exponential growth).
What about non-semisimple examples?

Example

For $p=2$ Venkatesh constructed an example \mathcal{V} by modifying the commutativity constraint in $\operatorname{Rep}(\mathbb{Z} / 2)$

Benson-Etingof

$p=2$ sequence $\mathcal{C}_{0}=\operatorname{Vec} \subset \mathcal{C}_{1}=\mathcal{V} \subset \mathcal{C}_{2}=\mathcal{T}\left(S L_{2}\right) / \mathcal{I}_{2} \subset \mathcal{C}_{3} \subset \ldots$
Technology: Hopf algebras (in categories) and graded extensions

More on tilting modules for $S L_{2}$

V - tautological 2-dimensional representation of $S L_{2}$
$\mathcal{T}\left(S L_{2}\right):=$ additive \otimes category generated by V
\{indecomposables of $\left.\mathcal{T}\left(S L_{2}\right)\right\}=\left\{\right.$ indecomposable summands of $\left.V^{\otimes n}\right\}$
Fact: indecomposables are classified by highest weight
Thus we have $T_{0}=1, T_{1}=V, T_{2}, T_{3}, \ldots$
Steinberg modules: $T_{0}, T_{p-1}, T_{p^{2}-1}, \ldots, \mathrm{St}_{r}=T_{p^{r}-1}, \ldots$
Each St_{r} generates a (thick) tensor ideal $\mathcal{P}_{r}=\left\langle T_{p^{r}-1}, T_{p^{r}}, T_{p^{r}+1}, \ldots\right\rangle$
Each thick tensor ideal above gives tensor ideal $\mathcal{I}_{r}: \mathcal{I}_{0} \supset \mathcal{I}_{1} \supset \mathcal{I}_{2} \supset \ldots$
Fact: Any tensor ideal in $\mathcal{T}\left(S L_{2}\right)$ is one of \mathcal{I}_{r}

Quotients

Define $\mathcal{T}_{p, r}:=\mathcal{T}\left(S L_{2}\right) / \mathcal{I}_{r}$, e.g. $\mathcal{T}_{p, 1}=$ Ver $_{p}$
$\mathcal{T}_{p, r}$ is non-semisimple and non-abelian for $r>1$ (except $r=2$ and $p=2$) $\mathcal{T}_{p, r}$ contains tensor ideal \mathcal{P}_{r-1} (and $\mathcal{I}_{r-1}=\mathcal{I}_{r-1} / \mathcal{I}_{r}$)

Main Theorem

Observation: (Benson-Etingof): their category $\mathcal{C}_{2 r}$ contains $\mathcal{T}_{2, r}$; $\left\{\right.$ the ideal $\left.\mathcal{P}_{r-1}\right\}=\left\{\right.$ subcategory of projective objects in $\left.\mathcal{C}_{2 r}\right\}$

Theorem (Benson-Etingof-O., Coulembier)

There exists a unique pre-Tannakian category Ver $_{p^{n}}$ containing $\mathcal{T}_{p, n}$ and such that \mathcal{P}_{n-1} coincides with the ideal of projective objects. The category Ver $_{p^{n}}$ is incompressible.

Split morphisms

A morphism (in additive category) $f: X \rightarrow Y$ is split if it is projection to a direct summand followed by an inclusion of a direct summand

Example

If X and Y are indecomposable, f is split $\Leftrightarrow f$ is an isomorphism or $f=0$
Exercise. Let P be a projective object and $f: X \rightarrow Y$ be any morphism Then $\operatorname{id}_{P} \otimes f: P \otimes X \rightarrow P \otimes Y$ is split

Splitting ideals

Let \mathcal{T} be a rigid symmetric monoidal category (perhaps non-abelian), $\operatorname{dim} \operatorname{Hom}(X, Y)<\infty$
Let $\mathcal{P} \subset \mathcal{T}$ be a thick tensor ideal
We say that \mathcal{P} is splitting ideal if for any morphism $f: X \rightarrow Y$ in \mathcal{T} and $P \in \mathcal{P}$ the morphism id $_{P} \otimes f$ is split

General construction

Given splitting ideal $\mathcal{P} \subset \mathcal{T}$ as above we construct abelian rigid tensor category $\mathcal{C} \supset \mathcal{P}$ such that \mathcal{P} is subcategory of projective objects
Hint on construction of \mathcal{C} : complexes of objects of \mathcal{P}
Some challenges: What is unit object of \mathcal{C} ?
Why \mathcal{C} is rigid?

Key Lemma

The ideal $\mathcal{P}_{n-1} \subset \mathcal{T}_{p, n}$ is splitting
Wanted: more examples of splitting tensor ideals!

Properties of Ver $_{p^{n}}$

Projectives and Cartan matrix

Projective objects: T_{i} with $p^{n-1}-1 \leq i<p^{n}-1$; $\#=p^{n}-p^{n-1}$ We set $P_{i}=T_{i-1}$ where $i=\left[i_{1} i_{2} \ldots i_{n}\right]_{p}$ has precisely n digits ($i_{1} \neq 0$!) Cartan matrix $C_{i j}:=\operatorname{dim} \operatorname{Hom}\left(P_{i}, P_{j}\right)$
Negative digits game: make some digits negative
$[23045]_{p} \rightsquigarrow 2(-3) 0(-4) 5=2 p^{4}-3 p^{3}-4 p+5$
Descendants of i : all positive numbers you get in this way
E.g. $[23045]_{p}$ has $2^{3}=8$ descendants

Tubbenhauer-Wedrich: $C_{i j}=\mid\{$ descendants of $i\} \cap\{$ descendants of $j\} \mid$
Exercise: $C_{i j}=0$ or power of 2
Exercise: $\operatorname{det} C_{i j}=$ power of p

Embeddings

We have $\operatorname{Ver}_{p} \subset \operatorname{Ver}_{p^{2}} \subset \operatorname{Ver}_{p^{3}} \subset \ldots$
For $p>2, \operatorname{Ver}_{p^{n}}=\operatorname{Ver}_{p^{n}}^{+} \boxtimes \mathrm{sVec}$

More properties of $\mathrm{Ver}_{p^{n}}$

Grothendieck ring ($p>2$)

$K\left(\operatorname{Ver}_{p^{n}}^{+}\right)=\mathbb{Z}\left[\xi+\xi^{-1}\right]$ where ξ is a primitive p^{n}-th root of 1
$K\left(\operatorname{Ver}_{p^{n}}\right)=\mathbb{Z}\left[\xi+\xi^{-1}\right][\mathbb{Z} / 2]$

Simples

Some simples: $T_{0}=\mathbf{1}, T_{1}, \ldots, T_{p-1}$ are simples $T_{i}^{[n]}$ in $\operatorname{Ver}_{p^{n}}(n>1)$ Tensor Product Theorem: for $i=\left[i_{1} \ldots i_{n}\right]$ with $i_{1} \neq p-1$ $L_{i}=T_{i_{1}}^{[1]} \otimes T_{i_{2}}^{[2]} \ldots T_{i_{n}}^{[n]}$ is simple (and this is a complete list) $P\left(L_{i}\right)=P_{s}$ where $s=\left[\left(i_{1}+1\right) i_{2}^{*} \ldots i_{n}^{*}\right]$ where $i^{*}=p-1-i$ Extensions $(p>2): \operatorname{Ext}^{1}\left(L_{i}, L_{j}\right)=0$ or k $\operatorname{Ext}^{1}\left(L_{i}, L_{j}\right) \neq 0 \Leftrightarrow i$ and j differ only in two consecutive digits, of which the first ones differ by 1 and the second ones add up to $p-2$
Blocks: $n(p-1)$ of them of sizes $1, p-1, p^{2}-p, \ldots, p^{n-1}-p^{n-2}$ $\operatorname{Ver}_{p^{n}}$ is a $\bmod p$ reduction of semisimple category in characteristic zero Corollary: $C=D D^{T}$ where D is the decomposition matrix

Some open questions

Module categories

Question 1. What are exact module categories over Ver $_{p^{n}}$?

Extensions

Question 2. What is $\operatorname{Ext}^{\bullet}(\mathbf{1}, \mathbf{1})$?

More examples?
Question 3. Are there any other incompressible categories?

Universality

Let $\operatorname{Ver}_{p^{\infty}}=\cup_{n} \operatorname{Ver}_{p^{n}}$
Let \mathcal{C} be a pre-Tannakian category of sub-exponential growth Question 4. Is there an exact tensor functor $\mathcal{C} \rightarrow \operatorname{Ver}_{p^{\infty}}$?

Thanks for listening!

