Mathematical Congress of the Americas Montréal, July 2017

Hopf Algebras and Tensor Categories

The group of modular extensions of a symmetric tensor category

Victor Ostrik

University of Oregon

vostrik@uoregon.edu

July 27

Fusion categories

 $= \mathbb{C}$ -linear (or k-linear) semisimple rigid tensor categories, dim Hom $(X, Y) < \infty$, finitely many simple objects, **1** is simple Measure of size: *Frobenius-Perron dimension* FPdim $(\mathcal{C}) \in \mathbb{R}_{>0}$

Double braiding

 $\begin{array}{l} \mathcal{C} - \text{braided fusion category} \\ \text{Braiding } c_{XY} : X \otimes Y \to Y \otimes X \\ \mathcal{C}' := \{X \in \mathcal{C} | c_{XY} \circ c_{YX} = \text{Id } \forall Y \in \mathcal{C}\} \leftarrow \text{Müger center} \end{array}$

Two extremes

C = E is symmetric if E' = E

 $\mathcal{C}=\mathcal{M}$ is non-degenerate or modular if $\mathcal{M}'=\mathsf{Vec}=\langle 1\rangle$

Remark: C' is always symmetric

(Minimal) Modular Extensions

C – braided fusion category **Question:** Can we embed C into modular M? **Answer:** Yes, e.g. $C \subset Z(C) \leftarrow$ Drinfeld center **Question:** What are most economical embeddings $C \subset M$?

Theorem (Müger, Drinfeld-Gelaki-Nikshych-O)

 $\mathsf{FPdim}(\mathcal{M}) \geq \mathsf{FPdim}(\mathcal{C})\mathsf{FPdim}(\mathcal{C}').$

Definition

 $\begin{array}{l} \textit{Minimal modular extension: } \mathcal{C} \subset \mathcal{M} \textit{ with} \\ \textit{FPdim}(\mathcal{M}) = \textit{FPdim}(\mathcal{C})\textit{FPdim}(\mathcal{C}'). \end{array}$

Example

$$\begin{split} \mathsf{FPdim}(\mathcal{Z}(\mathcal{C})) &= \mathsf{FPdim}(\mathcal{C})^2\\ \mathsf{Hence}\ \mathcal{C} \subset \mathcal{Z}(\mathcal{C}) \text{ is minimal if and only if } \mathcal{C} \text{ is symmetric} \end{split}$$

$\mathcal{M}\textit{ext}(\mathcal{C})$ and $\mathcal{M}\textit{ext}(\mathcal{E})$

Notation: Mext(C) – set of (minimal) modular extensions of C**Remark:** Mext(C) might be empty! (examples by Drinfeld)

Theorem (Lan-Kong-Wen)

(i) For symmetric \mathcal{E} , $\mathcal{M}ext(\mathcal{E})$ is an abelan group (ii) $\mathcal{M}ext(\mathcal{C})$ is a torsor over $\mathcal{M}ext(\mathcal{E})$ where $\mathcal{E} = \mathcal{C}'$

Example

(i)
$$G$$
 - finite group and $\mathcal{E} = \operatorname{Rep}_{\mathbb{C}}(G)$
Then $\mathcal{M}ext(\mathcal{E}) = H^3(G, \mathbb{C}^{\times})$
Explicitly: for $\omega \in H^3(G, \mathbb{C}^{\times})$, $\operatorname{Rep}(G) \subset \mathcal{Z}(\operatorname{Vec}_G^{\omega})$
(ii) $\mathcal{E} = \operatorname{sVec}$ then $\mathcal{M}ext(\mathcal{E}) = \mathbb{Z}/16\mathbb{Z}$ (Kitaev)
16-fold way (Bruillard, Galindo, Hagge, Ng, Plavnik, Rowell, Wang):
if $\mathcal{C}' = \operatorname{sVec}$ then $|\mathcal{M}ext(\mathcal{C})| = 16$ or (open question!) 0

Classification of symmetric tensor categories

More symmetric categories

Modify braiding in $\operatorname{Rep}(G)$: pick a central involution $z \in G$ and set

$$c'_{XY}(x\otimes y)=(-1)^{mn}y\otimes x$$

if
$$zx = (-1)^m x$$
, $zy = (-1)^n y$

Notation: $\operatorname{Rep}(G, z)$

Example

$$\operatorname{\mathsf{Rep}}(G,e) = \operatorname{\mathsf{Rep}}(G)$$

Super vector spaces: $\operatorname{sVec} = \operatorname{\mathsf{Rep}}(\mathbb{Z}/2\mathbb{Z},z)$ (z nontrivial)

Theorem (Grothendieck, Saavedra Rivano, Doplicher–Roberts, Deligne)

A symmetric fusion category over \mathbb{C} is of the form Rep(G, z).

$\mathcal{M}ext(\operatorname{Rep}(G, z))$

Category **zGrp**: Objects: (G, z) where $z \in G$ is central of order ≤ 2 Morphisms from (G, z) to (G', z'): homomorphisms $\phi : G \to G'$ such that $\phi(z) = z'$

Theorem (R. Usher)

 $\mathcal{M}ext(\operatorname{Rep}(G, z))$ is a contravariant functor $\mathbf{zGrp} \to \mathbb{Z}-\mathbf{Mod}$

Question: What is this functor?

Example

Assume z is nontrivial. Obvious morphism: $(\mathbb{Z}/2\mathbb{Z}, z) \rightarrow (G, z)$ Hence homomorphism: $\mathcal{M}ext(\operatorname{Rep}(G, z)) \rightarrow \mathcal{M}ext(\operatorname{Rep}(\mathbb{Z}/2\mathbb{Z}, z)) = \mathbb{Z}/16\mathbb{Z}$

Homomorphism: $\mathcal{M}ext(\operatorname{Rep}(G, z)) \to \mathbb{Z}/16\mathbb{Z}$

Theorem (R. Usher)

The homomorphism $\mathcal{M}ext(\operatorname{Rep}(G,z)) \to \mathbb{Z}/16\mathbb{Z}$ is surjective iff

$$1 \to \langle z \rangle = \mathbb{Z}/2\mathbb{Z} \to G \to G/\langle z \rangle \to 1$$

splits.

Question: How to characterize central extensions giving other images?

Example

 $G = \mathbb{Z}/4\mathbb{Z}, z \in G$ is nontrivial Then $|\mathcal{M}ext(\operatorname{Rep}(G, z))| = 32$ Image of $\mathcal{M}ext(\operatorname{Rep}(G, z)) \to \mathbb{Z}/16\mathbb{Z}$ is of order 8 Which group this is?

More context

Back to $\mathcal{E} = \operatorname{Rep}(G)$

Recall that $\mathcal{M}ext(\operatorname{Rep}(G)) = H^3(G, \mathbb{C}^{\times})$ Also $H^4(G, \mathbb{C}^{\times})$ – group of obstructions for $\mathcal{M}ext(\mathcal{C})$ being non-empty (where $\mathcal{C}' = \operatorname{Rep}(G)$) $H^1(G, \mathbb{C}^{\times}) =$ group of invertible objects in $\operatorname{Rep}(G)$ $H^2(G, \mathbb{C}^{\times}) =$ group of invertible module categories over $\operatorname{Rep}(G)$

Definition

For symmetric fusion category \mathcal{E} we set

$$\begin{aligned} &H^{1}_{sym}(\mathcal{E}) = \text{group of invertible objects in } \mathcal{E} \ (?) \\ &H^{2}_{sym}(\mathcal{E}) = \text{group of invertible module categories over } \mathcal{E} \\ &H^{3}_{sym}(\mathcal{E}) = \mathcal{M}ext(\mathcal{E}) \\ &H^{4}_{sym}(\mathcal{E}) - \text{conjectural group of obstructions for } \mathcal{M}ext(\mathcal{C}) \text{ being non-empty} \\ &(\text{where } \mathcal{C}' = \mathcal{E}) \end{aligned}$$

Question: In what sense $H_{sym}^{i}(\mathcal{E})$ is a cohomology theory?

 \mathcal{E} - finite symmetric tensor category $\mathcal{M}ext(\mathcal{E})$ - group of minimal *factorizable* extensions $\mathcal{E} \subset \mathcal{M}$ **Fact:** if \mathcal{E} is fusion over \mathbb{C} we get the same notion as before **Fact:** in characteristic p > 0 new definition of $\mathcal{M}ext(\mathcal{E})$ is forced: $\mathcal{Z}(\mathcal{E})$ might be non-semisimple!

Example

 \mathcal{E} over \mathbb{C} : representations of additive supergroup $(V_{odd}, +) =$ representations of super Hopf algebra $\wedge^{\bullet}(V)$ Gelaki-Sebbag: $\mathcal{M}ext(\mathcal{E}) = \mathbb{Z}/16\mathbb{Z}$

Another interesting example: $\mathcal{E} = \operatorname{Ver}_p$ (Verlinde category) open!

Thanks for listening!