Mathematical Congress of the Americas
Montréal, July 2017
Hopf Algebras and Tensor Categories

The group of modular extensions of a symmetric tensor category

Victor Ostrik
University of Oregon
vostrik@uoregon.edu

July 27

Braided fusion categories

Fusion categories

$=\mathbb{C}$-linear (or k-linear) semisimple rigid tensor categories, $\operatorname{dim} \operatorname{Hom}(X, Y)<\infty$, finitely many simple objects, $\mathbf{1}$ is simple Measure of size: Frobenius-Perron dimension $\operatorname{FPdim}(\mathcal{C}) \in \mathbb{R}_{>0}$

Double braiding

\mathcal{C} - braided fusion category
Braiding $c_{X Y}: X \otimes Y \rightarrow Y \otimes X$
$\mathcal{C}^{\prime}:=\left\{X \in \mathcal{C} \mid c_{X Y} \circ c_{Y X}=\mathrm{Id} \forall Y \in \mathcal{C}\right\} \leftarrow$ Müger center

Two extremes

$\mathcal{C}=\mathcal{E}$ is symmetric if $\mathcal{E}^{\prime}=\mathcal{E}$
$\mathcal{C}=\mathcal{M}$ is non-degenerate or modular if $\mathcal{M}^{\prime}=\mathrm{Vec}=\langle\mathbf{1}\rangle$
Remark: \mathcal{C}^{\prime} is always symmetric

(Minimal) Modular Extensions

\mathcal{C} - braided fusion category
Question: Can we embed \mathcal{C} into modular \mathcal{M} ?
Answer: Yes, e.g. $\mathcal{C} \subset \mathcal{Z}(\mathcal{C}) \leftarrow$ Drinfeld center
Question: What are most economical embeddings $\mathcal{C} \subset \mathcal{M}$?
Theorem (Müger, Drinfeld-Gelaki-Nikshych-O)
$F \operatorname{FPdim}(\mathcal{M}) \geq \operatorname{FPdim}(\mathcal{C}) F P d i m\left(\mathcal{C}^{\prime}\right)$.
Definition
Minimal modular extension: $\mathcal{C} \subset \mathcal{M}$ with
$\mathrm{FPdim}(\mathcal{M})=\mathrm{FPdim}(\mathcal{C}) \mathrm{FPdim}\left(\mathcal{C}^{\prime}\right)$.

Example

$\operatorname{FPdim}(\mathcal{Z}(\mathcal{C}))=\operatorname{FPdim}(\mathcal{C})^{2}$
Hence $\mathcal{C} \subset \mathcal{Z}(\mathcal{C})$ is minimal if and only if \mathcal{C} is symmetric

$\mathcal{M e x t}(\mathcal{C})$ and $\mathcal{M e x t}(\mathcal{E})$

Notation: $\mathcal{M e x t}(\mathcal{C})$ - set of (minimal) modular extensions of \mathcal{C} Remark: $\mathcal{M e x t}(\mathcal{C})$ might be empty! (examples by Drinfeld)

Theorem (Lan-Kong-Wen)

(i) For symmetric $\mathcal{E}, \mathcal{M e x t}(\mathcal{E})$ is an abelan group
(ii) $\operatorname{Mext}(\mathcal{C})$ is a torsor over $\mathcal{M e x t}(\mathcal{E})$ where $\mathcal{E}=\mathcal{C}^{\prime}$

Example

(i) G - finite group and $\mathcal{E}=\operatorname{Rep}_{\mathbb{C}}(G)$

Then $\operatorname{Mext}(\mathcal{E})=H^{3}\left(G, \mathbb{C}^{\times}\right)$
Explicitly: for $\omega \in H^{3}\left(G, \mathbb{C}^{\times}\right), \operatorname{Rep}(G) \subset \mathcal{Z}\left(\operatorname{Vec}_{G}^{\omega}\right)$
(ii) $\mathcal{E}=\operatorname{sVec}$ then $\operatorname{Mext}(\mathcal{E})=\mathbb{Z} / 16 \mathbb{Z}$ (Kitaev)

16-fold way (Bruillard, Galindo, Hagge, Ng, Plavnik, Rowell, Wang): if $\mathcal{C}^{\prime}=\mathrm{sVec}$ then $|\mathcal{M e x t}(\mathcal{C})|=16$ or (open question!) 0

Classification of symmetric tensor categories

More symmetric categories

Modify braiding in $\operatorname{Rep}(G)$: pick a central involution $z \in G$ and set

$$
\begin{aligned}
& c_{X Y}^{\prime}(x \otimes y)=(-1)^{m n} y \otimes x \\
& \text { if } z x=(-1)^{m} x, z y=(-1)^{n} y
\end{aligned}
$$

Notation: $\operatorname{Rep}(G, z)$

Example

$\operatorname{Rep}(G, e)=\operatorname{Rep}(G)$
Super vector spaces: $s V e c=\operatorname{Rep}(\mathbb{Z} / 2 \mathbb{Z}, z)(z$ nontrivial)
Theorem (Grothendieck, Saavedra Rivano, Doplicher-Roberts, Deligne)
A symmetric fusion category over \mathbb{C} is of the form $\operatorname{Rep}(G, z)$.

$\mathcal{M e x t}(\operatorname{Rep}(G, z))$

Category zGrp:

Objects: (G, z) where $z \in G$ is central of order ≤ 2
Morphisms from (G, z) to $\left(G^{\prime}, z^{\prime}\right)$:
homomorphisms $\phi: G \rightarrow G^{\prime}$ such that $\phi(z)=z^{\prime}$

Theorem (R. Usher)

$\operatorname{Mext}(\operatorname{Rep}(G, z))$ is a contravariant functor $\mathbf{z G r p} \rightarrow \mathbb{Z}-\operatorname{Mod}$
Question: What is this functor?

Example

Assume z is nontrivial.
Obvious morphism: $(\mathbb{Z} / 2 \mathbb{Z}, z) \rightarrow(G, z)$
Hence homomorphism:
$\mathcal{M e x t}(\operatorname{Rep}(G, z)) \rightarrow \mathcal{M e x t}(\operatorname{Rep}(\mathbb{Z} / 2 \mathbb{Z}, z))=\mathbb{Z} / 16 \mathbb{Z}$

Homomorphism: $\operatorname{Mext}(\operatorname{Rep}(G, z)) \rightarrow \mathbb{Z} / 16 \mathbb{Z}$

Theorem (R. Usher)

The homomorphism $\operatorname{Mext}(\operatorname{Rep}(G, z)) \rightarrow \mathbb{Z} / 16 \mathbb{Z}$ is surjective iff

$$
1 \rightarrow\langle z\rangle=\mathbb{Z} / 2 \mathbb{Z} \rightarrow G \rightarrow G /\langle z\rangle \rightarrow 1
$$

splits.

Question: How to characterize central extensions giving other images?

Example

$G=\mathbb{Z} / 4 \mathbb{Z}, z \in G$ is nontrivial
Then $|\mathcal{M e x t}(\operatorname{Rep}(G, z))|=32$
Image of $\mathcal{M e x t}(\operatorname{Rep}(G, z)) \rightarrow \mathbb{Z} / 16 \mathbb{Z}$ is of order 8
Which group this is?

More context

Back to $\mathcal{E}=\operatorname{Rep}(G)$

Recall that $\operatorname{Mext}(\operatorname{Rep}(G))=H^{3}\left(G, \mathbb{C}^{\times}\right)$
Also $H^{4}\left(G, \mathbb{C}^{\times}\right)$- group of obstructions for $\operatorname{Mext}(\mathcal{C})$ being non-empty (where $\mathcal{C}^{\prime}=\operatorname{Rep}(G)$)
$H^{1}\left(G, \mathbb{C}^{\times}\right)=$group of invertible objects in $\operatorname{Rep}(G)$
$H^{2}\left(G, \mathbb{C}^{\times}\right)=$group of invertible module categories over $\operatorname{Rep}(G)$

Definition

For symmetric fusion category \mathcal{E} we set
$H_{\text {sym }}^{1}(\mathcal{E})=$ group of invertible objects in $\mathcal{E}(?)$
$H_{\text {sym }}^{2}(\mathcal{E})=$ group of invertible module categories over \mathcal{E}
$H_{\text {sym }}^{3}(\mathcal{E})=\mathcal{M e x t}(\mathcal{E})$
$H_{\text {sym }}^{4}(\mathcal{E})$ - conjectural group of obstructions for $\mathcal{M e x t}(\mathcal{C})$ being non-empty (where $\mathcal{C}^{\prime}=\mathcal{E}$)

Question: In what sense $H_{\text {sym }}^{i}(\mathcal{E})$ is a cohomology theory?

Non-semisimple generalization

\mathcal{E} - finite symmetric tensor category
$\mathcal{M e x t}(\mathcal{E})$ - group of minimal factorizable extensions $\mathcal{E} \subset \mathcal{M}$
Fact: if \mathcal{E} is fusion over \mathbb{C} we get the same notion as before
Fact: in characteristic $p>0$ new definition of $\operatorname{Mext}(\mathcal{E})$ is forced:
$\mathcal{Z}(\mathcal{E})$ might be non-semisimple!

Example

\mathcal{E} over \mathbb{C} : representations of additive supergroup $\left(V_{\text {odd }},+\right)=$ representations of super Hopf algebra $\wedge^{\bullet}(V)$
Gelaki-Sebbag: $\mathcal{M e x t}(\mathcal{E})=\mathbb{Z} / 16 \mathbb{Z}$
Another interesting example: $\mathcal{E}=\operatorname{Ver}_{p}$ (Verlinde category) open!

Thanks for listening!

