International Congress of Mathematicians Seoul, August 2014

Multi-fusion categories of Harish-Chandra bimodules

Victor Ostrik

University of Oregon

vostrik@uoregon.edu

August 19

- 1. Harish-Chandra (bi)modules.
- 2. Associated varieties and tensor product modulo "smaller size".
- 3. Tensor categories and multi-fusion categories.
- 4. Actions of Harish-Chandra bimodules (Whittaker modules and finite W-algebras).
- 5. Sheaves.

Harish-Chandra modules

 $G_{\mathbb{R}}$ – real semi-simple Lie group, e.g. $SL(n, \mathbb{R})$ <u>Harish-Chandra</u> (1953): many questions about continuous complex representations of $G_{\mathbb{R}}$ can be reduced to pure algebra.

 $\mathfrak{g} = \operatorname{Lie}(G_{\mathbb{R}}) \otimes_{\mathbb{R}} \mathbb{C}, \ U(\mathfrak{g}) - universal enveloping algebra$ $<math>\mathcal{K} \subset G_{\mathbb{R}} - maximal compact subgroup, e.g. \ SO(n, \mathbb{R}) \subset SL(n, \mathbb{R})$

Definition

A (\mathfrak{g}, K) -module (or Harish-Chandra module) is a space V with actions of \mathfrak{g} and K such that

1. V is algebraic K-module, i.e. V is a union of finite dimensional K-modules.

2. The actions are compatible: g-action is K-equivariant and the differential of K-action agrees with $Lie(K) \subset g$ -action.

3. V is finitely generated $U(\mathfrak{g})$ -module.

Complex groups and bimodules

 $G_{\mathbb{C}}$ – complex simply connected semi-simple Lie group, e.g. $SL(n, \mathbb{C})$ Let us consider $G_{\mathbb{C}}$ as a real Lie group

$$\begin{split} \mathfrak{g} &= \operatorname{Lie}(G_{\mathbb{C}}); \ \operatorname{Lie}(G_{\mathbb{C}}) \otimes_{\mathbb{R}} \mathbb{C} = \mathfrak{g} \oplus \mathfrak{g} \\ \text{representation of } \operatorname{Lie}(G_{\mathbb{C}}) \otimes_{\mathbb{R}} \mathbb{C} \Leftrightarrow \text{ module over } U(\mathfrak{g} \oplus \mathfrak{g}) = U(\mathfrak{g}) \otimes_{\mathbb{C}} U(\mathfrak{g}) \\ x \mapsto -x \text{ induces } U(\mathfrak{g}) \simeq U(\mathfrak{g})^{op}, \text{ so } U(\mathfrak{g}) \otimes_{\mathbb{C}} U(\mathfrak{g}) \simeq U(\mathfrak{g}) \otimes_{\mathbb{C}} U(\mathfrak{g})^{op} \\ \text{Thus } \operatorname{Lie}(G_{\mathbb{C}}) \otimes_{\mathbb{R}} \mathbb{C} - \text{representation is the same as } U(\mathfrak{g}) - \text{bimodule} \end{split}$$

We can choose $K \subset G_{\mathbb{C}}$ such that $\operatorname{Lie}(K) \otimes_{\mathbb{R}} \mathbb{C} \subset \operatorname{Lie}(G_{\mathbb{C}}) \otimes_{\mathbb{R}} \mathbb{C}$ is the diagonal $\Delta \mathfrak{g} \subset \mathfrak{g} \oplus \mathfrak{g}$, e.g. $K = SU(n) \subset SL(n, \mathbb{C})$ $M - U(\mathfrak{g})$ -bimodule; adjoint action: ad(x)m := xm - mx $U(\mathfrak{g})$ -bimodule is algebraic if it is a union of finite dimensional \mathfrak{g} -modules with respect to the adjoint action.

Example

 $U(\mathfrak{g})$ is algebraic (use PBW filtration) and $U(\mathfrak{g}) \otimes_{\mathbb{C}} U(\mathfrak{g})$ is not.

Definition

A Harish-Chandra bimodule over \mathfrak{g} is a finitely generated $U(\mathfrak{g})$ -bimodule which is algebraic.

Lemma

If M and N are Harish-Chandra bimodules then so is $M \otimes_{U(\mathfrak{g})} N$.

The tensor product ⊗_{U(g)} is associative
U(g) is the unit for this tensor product
Thus the category H of Harish-Chandra bimodules is a tensor category.

Remark. If *M* is a Harish-Chandra bimodule over \mathfrak{g} and *N* is (\mathfrak{g}, K) -module then $M \otimes_{U(\mathfrak{g})} N$ is also (\mathfrak{g}, K) -module Thus the category \mathcal{H} acts on the category of (\mathfrak{g}, K) -modules.

Central characters and simple Harish-Chandra bimodules

 $Z(\mathfrak{g}) \subset U(\mathfrak{g})$ center of the universal enveloping algebra $Z(\mathfrak{g})$ acts on an irreducible \mathfrak{g} -module via central character $\chi : Z(\mathfrak{g}) \to \mathbb{C}$ $\chi_1 \mathcal{H}_{\chi_2} \subset \mathcal{H}$ - full subcategory where the left $Z(\mathfrak{g})$ -action factors through χ_1 and the right $Z(\mathfrak{g})$ -action factors through χ_2 Any irreducible Harish-Chandra bimodule is contained in a unique $\chi_1 \mathcal{H}_{\chi_2} \subset \mathcal{H}$

 $\begin{array}{l} \chi_1 \mathcal{H}_{\chi_2} \otimes_{\mathcal{U}(\mathfrak{g})} \chi_3 \mathcal{H}_{\chi_4} \subset \chi_1 \mathcal{H}_{\chi_4} \text{ and } \chi_1 \mathcal{H}_{\chi_2} \otimes_{\mathcal{U}(\mathfrak{g})} \chi_3 \mathcal{H}_{\chi_4} = 0 \text{ unless } \chi_2 = \chi_3 \\ \mathcal{H}(\chi) := {}_{\chi} \mathcal{H}_{\chi} \text{ is tensor subcategory of } \mathcal{H} \\ \text{unit object: } \mathcal{U}(\mathfrak{g})_{\chi} := \mathcal{U}(\mathfrak{g})/\text{Ker}(\chi)\mathcal{U}(\mathfrak{g}) \end{array}$

Convention: χ is integral regular, e.g. $\chi = \chi_0$ trivial central character

Theorem (Bernstein-S. Gelfand, Enright, Joseph)

Irreducible bimodules in $\mathcal{H}(\chi) \leftrightarrow$ elements of the Weyl group W.

Proof uses <u>Bernstein-Gelfand-Gelfand</u> category \mathcal{O} .

Associated varieties

 $M \in \mathcal{H}, M_0 \subset M$ finite dimensional subspace which generates M and which is invariant under the adjoint action $U(\mathfrak{g})_0 \subset U(\mathfrak{g})_1 \subset \cdots \subset U(\mathfrak{g})$ PBW filtration $M_n = U(\mathfrak{g})_n M_0 \Rightarrow$ filtration $M_0 \subset M_1 \subset \cdots \subset M$

Associated graded

 $\operatorname{gr} M$ is a finitely generated module over $\operatorname{gr} U(\mathfrak{g}) = S^{\bullet}(\mathfrak{g})$ Moreover, this module is equivariant with respect to $G_{\mathbb{C}}$ -action

Let us identify $\mathfrak{g}^* = \operatorname{Spec}(S^{\bullet}(\mathfrak{g}))$ with \mathfrak{g} via the Killing form

Definition

The associated variety V(M) is the support of grM in \mathfrak{g} .

- $V(M) = V(L) \cup V(K)$ for a s.e.s. $0 \rightarrow L \rightarrow M \rightarrow K \rightarrow 0$
- $V(M \otimes_{U(\mathfrak{g})} N) \subset V(M) \cap V(N)$

Nilpotent orbits

 $x \in \mathfrak{g}$ is nilpotent if $ad(x) : \mathfrak{g} \to \mathfrak{g}$ is nilpotent **Example.** $x \in sl(n, \mathbb{C})$ is nilpotent $\Leftrightarrow x^n = 0$ $\mathcal{N} \subset \mathfrak{g}$ is the nilpotent cone, i.e. the set of all nilpotent elements Dynkin+Kostant: \mathcal{N} consists of finitely many $G_{\mathbb{C}}$ -orbits **Example.** nilpotent orbits in $sl(n, \mathbb{C}) \leftrightarrow$ partitions of *n* For $\mathbb{O} \subset \mathcal{N}$, $\overline{\mathbb{O}}$ is its closure; partial order: $\mathbb{O}' < \mathbb{O} \Leftrightarrow \mathbb{O}' \subset \overline{\mathbb{O}}$

• for $M \in {}_{\chi_1}\mathcal{H}_{\chi_2}$ we have $V(M) \subset \mathcal{N}$. Moreover,

Theorem (Borho-Brylinsky, Joseph)

For irreducible $M \in \mathcal{H}$, V(M) is irreducible, i.e. $V(M) = \overline{\mathbb{O}}$.

 $\mathcal{H}(\chi)_{\leq \mathbb{O}}$ – full subcategory of $\mathcal{H}(\chi)$ consisting of M with $V(M) \subset \overline{\mathbb{O}}$ $\mathcal{H}(\chi)_{<\mathbb{O}}$ – full subcategory of $\mathcal{H}(\chi)_{<\mathbb{O}}$ consisting of M with $V(M) \neq \overline{\mathbb{O}}$ Both $\mathcal{H}(\chi)_{\leq \mathbb{O}}$ and $\mathcal{H}(\chi)_{\leq \mathbb{O}}$ are Serre subcategories $\mathcal{H}(\chi)_{<\mathbb{O}}$ is closed under $\otimes_{U(\mathfrak{a})}$; $\mathcal{H}(\chi)_{<\mathbb{O}}$ is "ideal" with respect to $\otimes_{U(\mathfrak{a})}$ Victor Ostrik (U of O)

Cell categories

Serre quotients

We can form $\tilde{\mathcal{H}}(\chi)_{\mathbb{O}} = \mathcal{H}(\chi)_{\leq \mathbb{O}} / \mathcal{H}(\chi)_{<\mathbb{O}}$ Tensor products $\otimes_{U(\mathfrak{g})}$ descends to $\otimes : \tilde{\mathcal{H}}(\chi)_{\mathbb{O}} \times \tilde{\mathcal{H}}(\chi)_{\mathbb{O}} \to \tilde{\mathcal{H}}(\chi)_{\mathbb{O}}$

• it is not clear whether $\tilde{\mathcal{H}}(\chi)_{\mathbb{O}}$ has a unit object $\mathcal{H}(\chi)_{\mathbb{O}}$ – full subcategory of $\tilde{\mathcal{H}}(\chi)_{\mathbb{O}}$ consisting of semisimple objects

Theorem (Joseph, Bezrukavnikov-Finkelberg-O, Losev)

 $\mathcal{H}(\chi)_{\mathbb{O}}$ is closed under \otimes .

 $\mathcal{H}(\chi)_{\mathbb{O}}$ has a unit object: let $Pr(\chi)_{\mathbb{O}}$ be the (finite) set of primitive ideals in $U(\mathfrak{g})_{\chi}$ with $V(U(\mathfrak{g})/I) = \overline{\mathbb{O}}$; then $\mathbf{1} = \bigoplus_{I \in Pr(\chi)_{\mathbb{O}}} U(\mathfrak{g})/I$

Theorem (Bezrukavnikov-Finkelberg-O, Losev-O)

 $\mathcal{H}(\chi)_{\mathbb{O}}$ is a multi-fusion category.

We will call $\mathcal{H}(\chi)_{\mathbb{O}}$ cell category associated with \mathbb{O}

Definition (MacLane)

Tensor category: quadruple $(\mathcal{C}, \otimes, a, \mathbf{1})$ where \mathcal{C} is a category, $\otimes : \mathcal{C} \times \mathcal{C} \to \mathcal{C}$ is a bifunctor, $a_{X,Y,Z} : (X \otimes Y) \otimes Z \simeq X \otimes (Y \otimes Z)$ is an associativity constraint, $\mathbf{1}$ is the unit object. 1. Pentagon axiom: the following diagram commutes for all $W, X, Y, Z \in \mathcal{C}$:

2. Unit axiom: both functors $1\otimes ?$ and $?\otimes 1$ are isomorphic to the identity functor.

Rigidity

For $X \in \mathcal{C}$ its right dual is $X^* \in \mathcal{C}$ together with $ev_X : X^* \otimes X \to \mathbf{1}$ and $\operatorname{coev}_X : \mathbf{1} \to X \otimes X^*$ such that the compositions equal the identities: $X \xrightarrow{\mathsf{COev}_X \otimes \mathsf{id}_X} (X \otimes X^*) \otimes X \xrightarrow{a_{X,X^*,X}} X \otimes (X^* \otimes X) \xrightarrow{\mathsf{id}_X \otimes \mathsf{ev}_X} X$ $X^* \xrightarrow{\mathsf{id}_{X^*} \otimes \mathsf{COev}_X} X^* \otimes (X \otimes X^*) \xrightarrow{a_{X,X^*,X}^{-1}} (X^* \otimes X) \otimes X^* \xrightarrow{\mathsf{ev}_X \otimes \mathsf{id}_{X^*}} X^*$

Definition

 \mathcal{C} is rigid if any $X \in \mathcal{C}$ has right and left duals.

Example (s)

1. $\mathcal{C} = \text{Bimod}(R)$ bimodules over a ring R: tensor product is \otimes_{R} , $\mathbf{1} = R$. $M \in \mathcal{C}$ has right dual $\Leftrightarrow M$ is f.g. projective as left R-module. 2. $\mathcal{C} = \text{End}(\mathcal{A})$ functors from a category \mathcal{A} to itself; tensor product is composition, $\mathbf{1} = \mathsf{Id}$. $F \in \mathcal{C}$ has a dual \Leftrightarrow adjoint of F exists. 3. $\mathcal{C} = Mod(R)$ modules over a commutative ring R; e.g. vector spaces over a field. $M \in \mathcal{C}$ has right dual $\Leftrightarrow M$ is f.g. projective $\Leftrightarrow M$ has left dual.

Example (continued)

4. (<u>H. Sinh</u>) Objects: elements of a group A; Hom $(g, h) = \emptyset$ if $g \neq h$, Hom(g, g) = S where S is an abelian group. $g \otimes h = gh$, $\alpha \otimes \beta = \alpha\beta$ for $g, h \in A, \alpha, \beta \in S$. Associativity constraint: $\omega_{g,h,k} \in S$ for any $g, h, k \in A$. Pentagon axiom $\Leftrightarrow \partial \omega = 1$, i.e. ω is a 3-cocycle on A with values in S. Tensor structures are parameterized by $H^3(A, S)$.

5. R – algebra over k with trivial center. Consider the category of invertible bimodules over R (morphisms are *isomorphisms* of bimodules). This category is tensor equivalent to category from (4). A = Pic(R) group of isomorphism classes of invertible bimodules (= non-commutattive Picard group of R); $S = k^{\times}$. Associator $\omega \in H^3(\text{Pic}(R), k^{\times})$. 5a. $\operatorname{Pic}(R) \supset \operatorname{Out}(R)$: $M_{\phi} = R$, $(a, b) \cdot c = ac\phi(b)$. Let $1 \neq \phi \in \mathbb{Z}/2\mathbb{Z} \subset \text{Out}(R)$, so $\phi^2 = Ad(g)$. **Exercise.** (i) $\phi(g) = \pm g$; (ii) $\omega|_{\mathbb{Z}/2\mathbb{Z}} \neq 0 \Leftrightarrow \phi(g) = -g$; (iii) Let $\phi(g) = -g$. Then $M^{\phi} \not\simeq M$ for any $M \in Irr(R)$. $R = \mathbb{C}\langle g, x, y \rangle / (xy - yx - 1, g^2 - 1, gx + xg, gy + yg),$ $\phi(g) = -g, \phi(x) = -y, \phi(y) = x.$

Definition (Etingof, Nikshych, O)

Tensor category C over k is multi-fusion if it is rigid and semi-simple with finitely many simple objects. C is fusion if in addition **1** is simple.

Example (char(k)=0)

- 0. Vec finite dimensional vector spaces.
- 1. $\operatorname{Rep}(A) f.d.$ representations of finite group A.

2. Vec_A – f.d. A–graded vector spaces. Thus simple objects are $k_a, a \in A$ and $k_a \otimes k_b = k_{ab}$. Generalization: Vec_A^{ω} – same as Vec_A but

 $\omega \in H^3(A, k^{\times})$ is used as the associator.

3. Bimod(*R*) where *R* is semisimple, e.g. $R = k \oplus k$. $\mathbf{1} = R$ is not simple. 4. *Y* is a finite set with *A*-action. $\operatorname{Coh}_A(Y \times Y) - A$ -equivariant vector bundles (or coherent sheaves) on $Y \times Y$. Convolution product: $F_1 * F_2 = p_{13*}(p_{12}^*(F_1) \otimes p_{23}^*(F_2))$ where $p_{ij} : Y \times Y \times Y \to Y \times Y$. **Exercise.** What is the number of simple summands in $\mathbf{1} \in \operatorname{Coh}_A(Y \times Y)$?

Module categories

The categories $\operatorname{Coh}_A(Y \times Y)$ are not closed under the operation of taking full tensor subcategory. For example $\operatorname{Vec}_B^{\omega}$ with $\omega \neq 0$ is usually not of the form $\operatorname{Coh}_A(Y \times Y)$ but it can be found as a subcategory in a suitable $\operatorname{Coh}_A(Y \times Y)$.

Definition

Let \mathcal{C} be a tensor category and \mathcal{M} be a category. We say that \mathcal{M} is a module category over \mathcal{C} (or that \mathcal{C} acts on \mathcal{M}) if we have a tensor functor $\mathcal{C} \to \text{End}(\mathcal{M})$. Equivalently, we have a bifunctor $\mathcal{C} \times \mathcal{M} \to \mathcal{M}$ with associativity constraint satisfying suitable axioms.

Example

Consider $C = \operatorname{Vec}_{\mathcal{A}}^{\omega}$. Let $B \subset A$ and $\psi \in Z^{2}(B, k^{\times})$ be such that $\partial \psi = \omega|_{B}$. Then $R_{B} = \bigoplus_{b \in B} k_{b}$ acquires a structure of associative algebra in C. Then $\mathcal{M}(B, \psi) = \{ \text{ right } R_{B} - \text{modules in } C \}$ is naturally a module category over C. Simple objects of $\mathcal{M}(B, \psi) \leftrightarrow A/B$.

Dual categories

Convention: If C is a multi-fusion category then any module category is assumed to be semisimple with finitely many simple objects.

Definition

Let \mathcal{M} be a module category over \mathcal{C} . Then $\mathcal{C}^*_{\mathcal{M}} := \text{End}_{\mathcal{C}}(\mathcal{M})$ is called dual category of \mathcal{C} with respect to \mathcal{M} .

Properties (Müger+Etingof, Nikshych, O)

- $\mathcal{C}^*_{\mathcal{M}}$ is multi-fusion category
- $\mathcal{C}^*_{\mathcal{M}}$ is fusion $\Leftrightarrow \mathcal{M}$ is indecomposable module category over \mathcal{C}
- $\bullet \ (\mathcal{C}^*_\mathcal{M})^*_\mathcal{M} \simeq \mathcal{C}$
- $\mathcal{C} \sim \mathcal{C}_{\mathcal{M}}^*$ is an equivalence relation (2-Morita equivalence)
- $\mathcal{C} \xrightarrow{F} \mathcal{D}$ tensor functor and \mathcal{M} is module category over \mathcal{D} . Then we have $\mathcal{D}^*_{\mathcal{M}} \xrightarrow{F^*} \mathcal{C}^*_{\mathcal{M}}$
- let us say that F is injective if it is fully faithful and surjective if any object of D is a subquotient of F(X). F injective $\Leftrightarrow F^*$ surjective

Convolution with twists

Example

$$\mathcal{C} = \mathsf{Vec}_{\mathcal{A}} \text{ and } \mathcal{M} = \oplus_i \mathcal{M}(B_i, 1).$$

Then $\mathcal{C}^*_{\mathcal{M}} = \mathsf{Coh}_{\mathcal{A}}(Y \times Y)$ where $Y = \sqcup_i \mathcal{A}/B_i$ (so $\mathcal{M} = \mathsf{Coh}(Y)$).

Generalization

Let $C = \operatorname{Vec}_{A}^{\omega}$ and $\mathcal{M} = \bigoplus_{i} \mathcal{M}(B_{i}, \psi_{i})$. We consider $\mathcal{C}_{\mathcal{M}}^{*}$ as cohomologically twisted version of $\operatorname{Coh}_{A}(Y \times Y)$. **Notation**: $\mathcal{C}_{\mathcal{M}}^{*} = \operatorname{Coh}_{A,\omega}(Y \times Y)$. Note that the information about ψ_{i} 's is implicitly contained in Y; Y is cohomologically twisted A-set.

Lemma

Let $C \subset Coh_A(Y \times Y)$ be a full multi-fusion subcategory such that $\mathcal{M} = Coh(Y)$ is indecomposable over C. Then there exists a surjective functor $F : \operatorname{Vec}_A \to \operatorname{Vec}_{\overline{A}}^{\omega}$ such that the action of Vec_A on \mathcal{M} factors through F and such that $C = \operatorname{Coh}_{\overline{A},\omega}(Y \times Y) = (\operatorname{Vec}_{\overline{A}}^{\omega})^*_{\mathcal{M}} \subset (\operatorname{Vec}_A)^*_{\mathcal{M}}$.

Whittaker modules

Let $e \in \mathfrak{g}$ be a nilpotent element. <u>Jacobson-Morozov</u>: $\exists h, f \in \mathfrak{g} \text{ s.t. } [h, e] = 2e, [h, f] = -2f, [e, f] = h.$ $\mathfrak{g} = \bigoplus_{n \in \mathbb{Z}} \mathfrak{g}(n), \quad \mathfrak{g}(n) = \{x \in \mathfrak{g} | [h, x] = nx\}.$ E.g. $e \in \mathfrak{g}(2)$ and $f \in \mathfrak{g}(-2).$ $x, y \mapsto (e, [x, y])$ non-degenerate skew-symmetric bilinear form on $\mathfrak{g}(-1).$ Pick a lagrangian subspace $\ell \subset \mathfrak{g}(-1)$ and set $\mathfrak{m} = \mathfrak{m}_{\ell} = \ell \oplus \bigoplus_{i \leq -2} \mathfrak{g}(i).$ Then $\xi(x) = (x, e)$ is a Lie algebra homomorphism $\mathfrak{m} \to \mathbb{C}.$ $\mathfrak{m}_{\xi} :=$ Lie subalgebra of $U(\mathfrak{g})$ spanned by $x - \xi(x), x \in \mathfrak{m}.$

Definition (Moeglin)

We say that \mathfrak{g} -module is Whittaker if the action of \mathfrak{m}_{ξ} on it is locally nilpotent. Wh – full subcategory of Whittaker \mathfrak{g} -modules.

$$\begin{split} \widetilde{\mathsf{Skr}} &: \mathsf{Wh} \to \mathsf{Vect}, \ M \mapsto \{ v \in M | \mathfrak{m}_{\xi} v = 0 \}. \\ \mathcal{U}(\mathfrak{g}, e) &= \mathsf{End}(\widetilde{\mathsf{Skr}}) - \underline{\mathsf{Premet}}' \text{s finite } \mathcal{W} - \mathsf{algebra}. \\ \widetilde{\mathsf{Skryabin}} \ (\mathsf{also} \ \underline{\mathsf{Gan}}, \ \underline{\mathsf{Ginzburg}} \ \mathsf{and} \ \underline{\mathsf{Losev}}): \ \mathsf{Skr} : \mathsf{Wh} \xrightarrow{\sim} \mathsf{Mod}(\mathcal{U}(\mathfrak{g}, e)) \\ \hline \mathbf{Remark}: \ \mathcal{U}(\mathfrak{g}, e) \ \mathsf{does} \ \mathsf{not} \ \mathsf{depend} \ \mathsf{on} \ \mathsf{choice} \ \mathsf{of} \ \ell \subset \mathfrak{g}(-1). \end{split}$$

Action of the cell categories on Whittaker modules

Lemma

For $M \in \mathcal{H}$ and $N \in Wh$, $M \otimes_{U(\mathfrak{g})} N \in Wh$. Thus \mathcal{H} acts on Wh.

• Let ${}^{\chi}$ Wh be the full subcategory of $M \in$ Wh such that $Z(\mathfrak{g})$ -action factors through a central character χ . Then $\mathcal{H}(\chi)$ acts on ${}^{\chi}$ Wh. ${}^{\chi}$ Wh^f – full subcategory of ${}^{\chi}$ Wh consisting of semisimple M such that Skr(M) is finite dimensional (\simeq semisimple f.d. $U(\mathfrak{g}, e)$ -modules).

Theorem (Losev)

Let $\mathbb{O} = G_{\mathbb{C}}e$. For $M \in \mathcal{H}(\chi)_{\leq \mathbb{O}}$ and $N \in {}^{\chi}Wh^{f}$, $M \otimes_{U(\mathfrak{g})} N \in {}^{\chi}Wh^{f}$. For $M \in \mathcal{H}(\chi)_{<\mathbb{O}}$ and $N \in {}^{\chi}Wh^{f}$, $M \otimes_{U(\mathfrak{g})} N = 0$. Thus the cell category $\mathcal{H}(\chi)_{\mathbb{O}}$ acts on ${}^{\chi}Wh^{f}$.

Let $Q = Z_{G_{\mathbb{C}}}(e, f, h)$. Then Q acts on $U(\mathfrak{g}, e)$ and on χWh^{f} . Q-action on χWh^{f} commutes with $\mathcal{H}(\chi)_{\mathbb{O}}$ -action. $Q^{0} \subset Q$ the unit component. The action of Q^{0} on χWh^{f} is trivial. Warning: this does not imply that $C(e) := Q/Q^{0}$ acts on χWh^{f} . Victor Ostrik (U of O) Fusion of Harish-Chandra bimodules August 19 18/26

Irreducible finite dimensional $U(\mathfrak{g}, e)$ -modules

Let us choose a finite subgroup $A \subset Q$ which surjects to Q/Q^0 . Then ${}^{\chi}Wh^f$ is a module category over Vec_A .

Theorem (Losev,O)

The functor
$$\mathcal{H}(\chi)_{\mathbb{O}} \to (\operatorname{Vec}_{\mathcal{A}})^*_{\chi \operatorname{Wh}^f} = \operatorname{End}_{\operatorname{Vec}_{\mathcal{A}}}({}^{\chi}\operatorname{Wh}^f)$$
 is fully faithful.

$^{\chi}Wh^{f}$ as module category over Vec_A

Y – set of isomorphism classes of irreducible f.d. $U(\mathfrak{g}, e)$ -modules. A acts on Y; moreover we have data of cohomologically twisted A-set. Thus $(\operatorname{Vec}_A)^*_{\mathrm{xWh}^f} = \operatorname{Coh}_A(Y \times Y)$ and $\mathcal{H}(\chi)_{\mathbb{O}} \subset \operatorname{Coh}_A(Y \times Y)$

Corollary

There is a quotient \overline{A} of A and $\omega \in H^3(\overline{A}, \mathbb{C}^{\times})$ such that the action of Vec_A on ${}^{\chi}Wh^f$ factors through tensor functor $\operatorname{Vec}_A \to \operatorname{Vec}_{\overline{A}}^{\omega}$ and the action on ${}^{\chi}Wh^f$ induces tensor equivalence $\mathcal{H}(\chi)_{\mathbb{O}} \simeq \operatorname{Coh}_{\overline{A},\omega}(Y \times Y)$.

Complements

H(*χ*)₀ ≠ 0 ⇔ the nilpotent orbit ^O is special in the sense of Lusztig.
The quotient map *A* → *Ā* factorizes through *A* ⊂ *Q* → *Q*/*Q*⁰ = *C*(*e*). *Ā* is Lusztig's quotient of *C*(*e*) (defined for any special nilpotent orbit).
Irr. summands of **1** ∈ *H*(*χ*)₀ ↔ primitive ideals *I* with *V*(*U*(*g*)/*I*) = ^O.
Irr. summands of **1** ∈ Coh_{*Ā*,ω}(*Y* × *Y*) ↔ *Ā*-orbits (=*Q*-orbits) in *Y*.
Hence irreducible f.d. *U*(*g*, *e*)_{*χ*}-modules which give rise to the same primitive ideal are *Q*-conjugated (Losev).

• Recall that irreducible objects of $\mathcal{H}(\chi) \leftrightarrow W$. It follows from Joseph's irreducibility theorem that $\operatorname{Irr}(\mathcal{H}(\chi)) = \sqcup_{\mathbb{O}} \operatorname{Irr}(\mathcal{H}(\chi)_{\mathbb{O}})$. Hence we have a partition of W indexed by special nilpotent orbits. This is known to coincide with partition into Kazhdan-Lusztig two sided cells. Each two sided cell is in turn partitioned into left cells and into right cells. This corresponds to partitions $\operatorname{Irr}(\mathcal{C}) = \sqcup_i \mathbf{1}_i \otimes \operatorname{Irr}(\mathcal{C}) = \sqcup_i \operatorname{Irr}(\mathcal{C}) \otimes \mathbf{1}_i$ where $\mathbf{1} = \bigoplus_i \mathbf{1}_i$ which holds for any multi-fusion category \mathcal{C} .

• $Y = \bigsqcup_i \overline{A}/B_i$ where $B_i \subset \overline{A}$ is well-defined up to conjugacy. These are Lusztig's subgroups attached to any left cell.

• $\oplus_{\mathbb{O}} K(\mathcal{H}(\chi)_{\mathbb{O}}) =: J$ is known to be asymptotic Hecke algebra (<u>Lusztig</u>). Lusztig's isomorphism: $J \otimes_{\mathbb{Z}} \mathbb{Q} \simeq \mathbb{Q}[W]$. Thus any \mathbb{Q} -module over $K(\mathcal{H}(\chi)_{\mathbb{O}})$ gives rise to a W-module. For example $K(\mathcal{H}(\chi)_{\mathbb{O}} \otimes \mathbf{1}_i) \otimes \mathbb{Q}$ is constructible representation attached to a left cell.

Also K(Coh(Y)) is a module over $K(Coh_{\bar{A},\omega}(Y \times Y))$

<u>Dodd</u>: there is $W \times C(e)$ -equivariant embedding of $K(Coh(Y)) \otimes \mathbb{Q}$ into Springer representation $H^{top}(\mathcal{B}_e)$.

The 3-cocycle ω ∈ H³(Ā, C[×]) is almost always zero. ω ≠ 0 iff the corresponding two sided cell is exceptional. This happens only in types E₇ and E₈; in this case Ā = Z/2Z. Proof requires theory of character sheaves.
Assume that ω = 0. Then ^xWh^f = ⊕_i M(B_i, ψ_i). It can be shown that the cocycles ψ_i are all trivial.

• There is a conjectural description (Losev,O) of what happens in the case of χ which is no longer integral. The calculations suggest that in this case nontrivial 2-cocycles show up often.

• Further results: <u>Losev</u> gave formulas for dimensions of irreducible modules in χ Wh^f and proved that they coincide with Goldie ranks of quotients by primitive ideas.

Derived convolution

F – algebraically closed field (possibly of positive characteristic) X – algebraic variety over FSheaves on X form a category over field k: (a) D-modules: char(F)=0, k = F(b) perverse constructible sheaves in classical topology: $F = \mathbb{C}$, any k(c) perverse constructible ℓ -adic sheaves: $\ell \neq 0$ in F, $k = \overline{\mathbb{Q}}_{\ell}$

G - semisimple group over F of the same Dynkin type as \mathfrak{g} \mathcal{B} - flag variety of G ($\mathcal{B} = G/B$ where B is a Borel subgroup) Simple G-equivariant sheaves on $\mathcal{B} \times \mathcal{B} \leftrightarrow G$ -orbits on $\mathcal{B} \times \mathcal{B} \stackrel{Bruhat}{\longleftrightarrow} W$; $w \leftrightarrow I_w$

Convolution *: $F_1 * F_2 = p_{13*}(p_{12}^*(F_1) \otimes p_{23}^*(F_2))$ (use derived categories!) **Decomposition Theorem** (Beilinson, Bernstein, Deligne and Gabber) \Rightarrow $I_u * I_v \simeq \bigoplus_{w,i} I_w[i]^{n_{u,v}^w(i)}$

 $C_u C_v = \sum_{w,i} n_{u,v}^w(i) t^i C_w$ – Hecke algebra (over $\mathbb{Z}[t, t^{-1}]$) with Kazhdan-Lusztig basis

Asymptotic Hecke algebra and truncated convolution

 $\begin{aligned} a(w) &= max\{i | n_{u,v}^w(i) \neq 0 \text{ for some } u, v\} - \underline{\text{Lusztig}'s } a-\text{function} \\ t_u t_v &= \sum_w n_{u,v}^w(a(w))t_w - \underline{\text{Lusztig}'s } asymptotic Hecke algebra } J \text{ (over } \mathbb{Z}) \\ \underline{\text{Lusztig}: } J \text{ is associative with unit; } J \otimes \mathbb{Q} \simeq \mathbb{Q}[W] \\ \overline{J = \bigoplus_C J_C} - \text{sum over two sided cells in } W; \ a|_C = const =: a(C) \end{aligned}$

Multi-fusion category \mathcal{J}_C : simple objects $I_w, w \in C$ truncated convolution: $I_u \bullet I_v := \bigoplus_{w \in C} I_w^{n_{u,v}^w(a(C))}$

<u>Beilinson-Bernstein</u>: D-modules on $\mathcal{B} \simeq \mathfrak{g}$ -modules with central character χ_0 . **Corollary**: G-equivariant D-modules on $\mathcal{B} \times \mathcal{B} \simeq \mathcal{H}(\chi_0)$. Beilinson-Ginzburg: we can change equivalence above and make it tensor **Corollary** (Bezrukavnikov, Finkelberg, O): D-module version of $\mathcal{J}_C \simeq \mathcal{H}_{\mathbb{O}}$. **Theorem** (Bezrukavnikov, Finkelberg, O): $\mathcal{J}_C \simeq \operatorname{Coh}_{\bar{A},\omega}(Y \times Y)$ for any F.

Character sheaves and Drinfeld center

G-equivariant sheaves on $\mathcal{B} \times \mathcal{B} = \mathcal{B} \times \mathcal{B}$ -equivariant sheaves on GSuch sheaves are $\Delta(\mathcal{B})$ -equivariant $= Ad(\mathcal{B})$ -equivariant $\Gamma_{\mathcal{B}}^{\mathcal{G}} : Ad(\mathcal{B})$ -equivariant sheaves $\rightarrow Ad(\mathcal{G})$ -equivariant sheaves Simple constituents of $\Gamma_{\mathcal{B}}^{\mathcal{G}}(I_w) =:$ (unipotent) character sheaves (Lusztig)

 $\begin{array}{l} \mathcal{C} - \text{tensor category} \Rightarrow & \mathsf{Drinfeld \ center} \ \mathcal{Z}(\mathcal{C}): \\ \text{Objects of} \ \mathcal{Z}(\mathcal{C}) = \text{pairs} \ (X, \phi) \ \text{where} \ \phi: X \otimes ? \simeq ? \otimes X \\ \hline & \mathsf{M\"{u}ger}, \ O: \ \mathcal{Z}(\mathcal{C}_{\mathcal{M}}^*) \simeq \mathcal{Z}(\mathcal{C}) \ \text{for a multi-fusion category} \ \mathcal{C} \\ \hline & \mathbf{Example}: \ \mathcal{Z}(\mathsf{Coh}_{\bar{A},\omega}(Y \times Y)) \simeq \mathcal{Z}(\mathsf{Vec}_{\bar{A}}^{\omega}) - (\mathsf{twisted}) \ \mathsf{Drinfeld \ double} \end{array}$

Observation: the functor Γ_B^G is formally similar to functor $I : \mathcal{C} \to \mathcal{Z}(\mathcal{C})$ Bezrukavnikov, Finkelberg, O: using D-modules (so char(F) = 0) Ben-Zvi, Nadler: in the setting of infinity categories Lusztig: using mixed sheaves (for any F) Corollary: unipotent character sheaves $\leftrightarrow \sqcup_{\mathbb{O}} \operatorname{Irr}(\mathcal{Z}(\operatorname{Vec}_{\overline{A}}))$.

Coxeter groups

W – finite crystallographic Coxeter group What about more general Coxeter groups?

W – affine Weyl group <u>Lusztig</u>: two sided cells in $W \leftrightarrow$ nilpotent orbit in g <u>Bezrukavnikov, O</u>: $\mathcal{J}_C \simeq \operatorname{Coh}_Q(Y \times Y)$ (recall $Q = Z_{G_{\mathbb{C}}}(e, f, h)$) <u>Bezrukavnikov, Mirković</u>: interpretation of the set Y in terms of <u>unrestricted</u> representations of g in positive characteristic

W – infinite crystallographic group Lusztig: category \mathcal{J}_C makes sense; however

- infinite number of simple objects
- 1 might be "infinite direct sum"

Soergel+Elias, Williamson+Lusztig: \mathcal{J}_C makes sense for any W!• rigidity is not known; usually \mathcal{J}_C is not a convolution category Thanks for listening!