International Congress of Mathematicians

 Seoul, August 2014
Multi-fusion categories of Harish-Chandra bimodules

Victor Ostrik
University of Oregon
vostrik@uoregon.edu

August 19

Plan of the talk

1. Harish-Chandra (bi)modules.
2. Associated varieties and tensor product modulo "smaller size".
3. Tensor categories and multi-fusion categories.
4. Actions of Harish-Chandra bimodules (Whittaker modules and finite W-algebras).
5. Sheaves.

Harish-Chandra modules

$G_{\mathbb{R}}$ - real semi-simple Lie group, e.g. $S L(n, \mathbb{R})$ Harish-Chandra (1953): many questions about continuous complex representations of $G_{\mathbb{R}}$ can be reduced to pure algebra.
$\mathfrak{g}=\operatorname{Lie}\left(G_{\mathbb{R}}\right) \otimes_{\mathbb{R}} \mathbb{C}, U(\mathfrak{g})$ - universal enveloping algebra $K \subset G_{\mathbb{R}}$ - maximal compact subgroup, e.g. $S O(n, \mathbb{R}) \subset S L(n, \mathbb{R})$

Definition

A (\mathfrak{g}, K)-module (or Harish-Chandra module) is a space V with actions of \mathfrak{g} and K such that

1. V is algebraic K-module, i.e. V is a union of finite dimensional K-modules.
2. The actions are compatible: \mathfrak{g}-action is K-equivariant and the differential of K-action agrees with $\operatorname{Lie}(K) \subset \mathfrak{g}$-action.
3. V is finitely generated $U(\mathfrak{g})$-module.

Complex groups and bimodules

$G_{\mathbb{C}}$ - complex simply connected semi-simple Lie group, e.g. $S L(n, \mathbb{C})$ Let us consider $G_{\mathbb{C}}$ as a real Lie group
$\mathfrak{g}=\operatorname{Lie}\left(G_{\mathbb{C}}\right) ; \operatorname{Lie}\left(G_{\mathbb{C}}\right) \otimes_{\mathbb{R}} \mathbb{C}=\mathfrak{g} \oplus \mathfrak{g}$
representation of $\operatorname{Lie}\left(G_{\mathbb{C}}\right) \otimes_{\mathbb{R}} \mathbb{C} \Leftrightarrow$ module over $U(\mathfrak{g} \oplus \mathfrak{g})=U(\mathfrak{g}) \otimes_{\mathbb{C}} U(\mathfrak{g})$ $x \mapsto-x$ induces $U(\mathfrak{g}) \simeq U(\mathfrak{g})^{o p}$, so $U(\mathfrak{g}) \otimes_{\mathbb{C}} U(\mathfrak{g}) \simeq U(\mathfrak{g}) \otimes_{\mathbb{C}} U(\mathfrak{g})^{o p}$
Thus $\operatorname{Lie}\left(G_{\mathbb{C}}\right) \otimes_{\mathbb{R}} \mathbb{C}$-representation is the same as $U(\mathfrak{g})$-bimodule

We can choose $K \subset G_{\mathbb{C}}$ such that $\operatorname{Lie}(K) \otimes_{\mathbb{R}} \mathbb{C} \subset \operatorname{Lie}\left(G_{\mathbb{C}}\right) \otimes_{\mathbb{R}} \mathbb{C}$ is the diagonal $\Delta \mathfrak{g} \subset \mathfrak{g} \oplus \mathfrak{g}$, e.g. $K=S U(n) \subset S L(n, \mathbb{C})$
$M-U(\mathfrak{g})$-bimodule; adjoint action: $\operatorname{ad}(x) m:=x m-m x$
$U(\mathfrak{g})$-bimodule is algebraic if it is a union of finite dimensional \mathfrak{g}-modules with respect to the adjoint action.

Example

$U(\mathfrak{g})$ is algebraic (use PBW filtration) and $U(\mathfrak{g}) \otimes_{\mathbb{C}} U(\mathfrak{g})$ is not.

Harish-Chandra bimodules

Definition

A Harish-Chandra bimodule over \mathfrak{g} is a finitely generated $U(\mathfrak{g})$-bimodule which is algebraic.

Lemma

If M and N are Harish-Chandra bimodules then so is $M \otimes_{U(\mathfrak{g})} N$.

- The tensor product $\otimes_{U(\mathfrak{g})}$ is associative
- $U(\mathfrak{g})$ is the unit for this tensor product

Thus the category \mathcal{H} of Harish-Chandra bimodules is a tensor category.

Remark. If M is a Harish-Chandra bimodule over \mathfrak{g} and N is (\mathfrak{g}, K)-module then $M \otimes_{U(\mathfrak{g})} N$ is also (\mathfrak{g}, K)-module Thus the category \mathcal{H} acts on the category of (\mathfrak{g}, K)-modules.

Central characters and simple Harish-Chandra bimodules

$Z(\mathfrak{g}) \subset U(\mathfrak{g})$ center of the universal enveloping algebra
$Z(\mathfrak{g})$ acts on an irreducible \mathfrak{g}-module via central character $\chi: Z(\mathfrak{g}) \rightarrow \mathbb{C}$ ${ }_{\chi_{1}} \mathcal{H}_{\chi_{2}} \subset \mathcal{H}$ - full subcategory where the left $Z(\mathfrak{g})$-action factors through χ_{1} and the right $Z(\mathfrak{g})$-action factors through χ_{2}
Any irreducible Harish-Chandra bimodule is contained in a unique $\chi_{1} \mathcal{H}_{\chi_{2}} \subset \mathcal{H}$
${ }_{\chi_{1}} \mathcal{H}_{\chi_{2}} \otimes U(\mathfrak{g}) \chi_{3} \mathcal{H}_{\chi_{4}} \subset{ }_{\chi_{1}} \mathcal{H}_{\chi_{4}}$ and ${ }_{\chi_{1}} \mathcal{H}_{\chi_{2}} \otimes{ }_{U(\mathfrak{g}) \chi_{3}} \mathcal{H}_{\chi_{4}}=0$ unless $\chi_{2}=\chi_{3}$ $\mathcal{H}(\chi):={ }_{\chi} \mathcal{H}_{\chi}$ is tensor subcategory of \mathcal{H} unit object: $U(\mathfrak{g})_{\chi}:=U(\mathfrak{g}) / \operatorname{Ker}(\chi) U(\mathfrak{g})$

Convention: χ is integral regular, e.g. $\chi=\chi_{0}$ trivial central character

Theorem (Bernstein-S. Gelfand, Enright, Joseph)

Irreducible bimodules in $\mathcal{H}(\chi) \leftrightarrow$ elements of the Weyl group W.
Proof uses Bernstein-Gelfand-Gelfand category \mathcal{O}.

Associated varieties

$M \in \mathcal{H}, M_{0} \subset M$ finite dimensional subspace which generates M and which is invariant under the adjoint action $U(\mathfrak{g})_{0} \subset U(\mathfrak{g})_{1} \subset \cdots \subset U(\mathfrak{g})$ PBW filtration $M_{n}=U(\mathfrak{g})_{n} M_{0} \Rightarrow$ filtration $M_{0} \subset M_{1} \subset \cdots \subset M$

Associated graded

grM is a finitely generated module over $\operatorname{gr} U(\mathfrak{g})=S^{\bullet}(\mathfrak{g})$
Moreover, this module is equivariant with respect to $G_{\mathbb{C}}$-action
Let us identify $\mathfrak{g}^{*}=\operatorname{Spec}\left(S^{\bullet}(\mathfrak{g})\right)$ with \mathfrak{g} via the Killing form

Definition

The associated variety $V(M)$ is the support of $\operatorname{gr} M$ in \mathfrak{g}.

- $V(M)=V(L) \cup V(K)$ for a s.e.s. $0 \rightarrow L \rightarrow M \rightarrow K \rightarrow 0$
- $V\left(M \otimes_{U(\mathfrak{g})} N\right) \subset V(M) \cap V(N)$

Filtration by nilpotent orbits

Nilpotent orbits

$x \in \mathfrak{g}$ is nilpotent if $\operatorname{ad}(x): \mathfrak{g} \rightarrow \mathfrak{g}$ is nilpotent
Example. $x \in s l(n, \mathbb{C})$ is nilpotent $\Leftrightarrow x^{n}=0$
$\mathcal{N} \subset \mathfrak{g}$ is the nilpotent cone, i.e. the set of all nilpotent elements
Dynkin+Kostant: \mathcal{N} consists of finitely many $G_{\mathbb{C}}$-orbits
Example. nilpotent orbits in $s l(n, \mathbb{C}) \leftrightarrow$ partitions of n
For $\mathbb{O} \subset \mathcal{N}, \overline{\mathbb{O}}$ is its closure; partial order: $\mathbb{O}^{\prime} \leq \mathbb{O} \Leftrightarrow \mathbb{O}^{\prime} \subset \overline{\mathbb{O}}$

- for $M \in{ }_{\chi_{1}} \mathcal{H}_{\chi_{2}}$ we have $V(M) \subset \mathcal{N}$. Moreover,

Theorem (Borho-Brylinsky, Joseph)

For irreducible $M \in \mathcal{H}, V(M)$ is irreducible, i.e. $V(M)=\overline{\mathbb{O}}$.
$\mathcal{H}(\chi)_{\leq \mathbb{O}}$ - full subcategory of $\mathcal{H}(\chi)$ consisting of M with $V(M) \subset \overline{\mathbb{O}}$ $\mathcal{H}(\chi)_{<\mathbb{O}}$ - full subcategory of $\mathcal{H}(\chi)_{\leq \mathbb{C}}$ consisting of M with $V(M) \neq \overline{\mathbb{O}}$ Both $\mathcal{H}(\chi)_{\leq \mathbb{O}}$ and $\mathcal{H}(\chi)_{<\mathbb{Q}}$ are Serre subcategories $\mathcal{H}(\chi)_{\leq \mathbb{O}}$ is closed under $\otimes_{U(\mathfrak{g})} ; \mathcal{H}(\chi)_{<\mathbb{O}}$ is "ideal" with respect to $\otimes_{U(\mathfrak{g})}$

Cell categories

Serre quotients

We can form $\tilde{\mathcal{H}}(\chi)_{\mathbb{O}}=\mathcal{H}(\chi)_{\leq \mathbb{C}} / \mathcal{H}(\chi)_{<\mathbb{O}}$
Tensor products $\otimes_{U(\mathfrak{g})}$ descends to $\otimes: \tilde{\mathcal{H}}(\chi)_{\mathbb{O}} \times \tilde{\mathcal{H}}(\chi)_{\mathbb{O}} \rightarrow \tilde{\mathcal{H}}(\chi)_{\mathbb{O}}$

- it is not clear whether $\tilde{\mathcal{H}}(\chi)_{\mathbb{O}}$ has a unit object $\mathcal{H}(\chi)_{\mathbb{O}}$ - full subcategory of $\tilde{\mathcal{H}}(\chi)_{\mathbb{O}}$ consisting of semisimple objects

Theorem (Joseph, Bezrukavnikov-Finkelberg-O, Losev)

$\mathcal{H}(\chi)_{\mathbb{O}}$ is closed under \otimes.
$\mathcal{H}(\chi)_{\mathbb{O}}$ has a unit object: let $\operatorname{Pr}(\chi)_{\mathbb{O}}$ be the (finite) set of primitive ideals in $U(\mathfrak{g})_{\chi}$ with $V(U(\mathfrak{g}) / I)=\overline{\mathbb{O}}$; then $\mathbf{1}=\oplus_{I \in \operatorname{Pr}(\chi)_{\mathbb{C}}} U(\mathfrak{g}) / I$
Theorem (Bezrukavnikov-Finkelberg-O, Losev-O) $\mathcal{H}(\chi)_{\mathbb{O}}$ is a multi-fusion category.

We will call $\mathcal{H}(\chi)_{\mathbb{O}}$ cell category associated with \mathbb{O}

Tensor (=monoidal) categories

Definition (MacLane)

Tensor category: quadruple $(\mathcal{C}, \otimes, a, \mathbf{1})$ where \mathcal{C} is a category, $\otimes: \mathcal{C} \times \mathcal{C} \rightarrow \mathcal{C}$ is a bifunctor, $a_{X, Y, Z:}(X \otimes Y) \otimes Z \simeq X \otimes(Y \otimes Z)$ is an associativity constraint, $\mathbf{1}$ is the unit object.

1. Pentagon axiom: the following diagram commutes for all $W, X, Y, Z \in \mathcal{C}$:

2. Unit axiom: both functors $\mathbf{1} \otimes$? and ? $\otimes 1$ are isomorphic to the identity functor.

Rigidity

For $X \in \mathcal{C}$ its right dual is $X^{*} \in \mathcal{C}$ together with $\mathrm{ev}_{X}: X^{*} \otimes X \rightarrow \mathbf{1}$ and $\operatorname{coev}_{X}: \mathbf{1} \rightarrow X \otimes X^{*}$ such that the compositions equal the identities:
$X \xrightarrow{\operatorname{coev}_{x} \otimes \mathrm{id}_{x}}\left(X \otimes X^{*}\right) \otimes X \xrightarrow{a_{x, X^{*}, X}} X \otimes\left(X^{*} \otimes X\right) \xrightarrow{\text { id } x \otimes \mathrm{ev}_{X}} X$
$X^{*} \xrightarrow{\mathrm{id}_{X^{*}} \otimes \operatorname{coev}_{X}} X^{*} \otimes\left(X \otimes X^{*}\right) \xrightarrow{a_{X}^{-1}, X^{*}, x}\left(X^{*} \otimes X\right) \otimes X^{*} \xrightarrow{\mathrm{ev}_{X} \otimes \mathrm{id}_{X^{*}}} X^{*}$

Definition

\mathcal{C} is rigid if any $X \in \mathcal{C}$ has right and left duals.

Example (s)

1. $\mathcal{C}=\operatorname{Bimod}(R)$ bimodules over a ring R : tensor product is $\otimes_{R}, \mathbf{1}=R$. $M \in \mathcal{C}$ has right dual $\Leftrightarrow M$ is f.g. projective as left R-module.
2. $\mathcal{C}=\operatorname{End}(\mathcal{A})$ functors from a category \mathcal{A} to itself; tensor product is composition, $\mathbf{1}=$ Id. $F \in \mathcal{C}$ has a dual \Leftrightarrow adjoint of F exists.
3. $\mathcal{C}=\operatorname{Mod}(R)$ modules over a commutative ring R; e.g. vector spaces over a field.
$M \in \mathcal{C}$ has right dual $\Leftrightarrow M$ is f.g. projective $\Leftrightarrow M$ has left dual.

Example (continued)

4. (H. Sinh) Objects: elements of a group $A ; \operatorname{Hom}(g, h)=\emptyset$ if $g \neq h$, $\operatorname{Hom}(g, g)=S$ where S is an abelian group. $g \otimes h=g h, \alpha \otimes \beta=\alpha \beta$ for $g, h \in A, \alpha, \beta \in S$. Associativity constraint: $\omega_{g, h, k} \in S$ for any $g, h, k \in A$. Pentagon axiom $\Leftrightarrow \partial \omega=1$, i.e. ω is a 3-cocycle on A with values in S. Tensor structures are parameterized by $H^{3}(A, S)$.
5. R - algebra over k with trivial center. Consider the category of invertible bimodules over R (morphisms are isomorphisms of bimodules).
This category is tensor equivalent to category from (4). $A=\operatorname{Pic}(R) \operatorname{group}$ of isomorphism classes of invertible bimodules (= non-commutattive
Picard group of $R) ; S=k^{\times}$. Associator $\omega \in H^{3}\left(\operatorname{Pic}(R), k^{\times}\right)$.
5a. $\operatorname{Pic}(R) \supset \operatorname{Out}(R): M_{\phi}=R,(a, b) \cdot c=a c \phi(b)$.
Let $1 \neq \phi \in \mathbb{Z} / 2 \mathbb{Z} \subset \operatorname{Out}(R)$, so $\phi^{2}=\operatorname{Ad}(g)$.
Exercise. (i) $\phi(g)= \pm g$; (ii) $\left.\omega\right|_{\mathbb{Z} / 2 \mathbb{Z}} \neq 0 \Leftrightarrow \phi(g)=-g$; (iii) Let
$\phi(g)=-g$. Then $M^{\phi} \not \approx M$ for any $M \in \operatorname{Irr}(R)$.
$R=\mathbb{C}\langle g, x, y\rangle /\left(x y-y x-1, g^{2}-1, g x+x g, g y+y g\right)$,
$\phi(g)=-g, \phi(x)=-y, \phi(y)=x$.

Multi-fusion categories

Definition (Etingof, Nikshych, O)

Tensor category \mathcal{C} over k is multi-fusion if it is rigid and semi-simple with finitely many simple objects. \mathcal{C} is fusion if in addition $\mathbf{1}$ is simple.

Example ($\operatorname{char}(k)=0$)

0 . Vec - finite dimensional vector spaces.

1. $\operatorname{Rep}(A)-\mathrm{f} . \mathrm{d}$. representations of finite group A.
2. $\mathrm{Vec}_{A}-\mathrm{f} . \mathrm{d}$. A-graded vector spaces. Thus simple objects are $k_{a}, a \in A$ and $k_{a} \otimes k_{b}=k_{a b}$. Generalization: $\operatorname{Vec}_{A}^{\omega}$ - same as Vec_{A} but $\omega \in H^{3}\left(A, k^{\times}\right)$is used as the associator.
3. $\operatorname{Bimod}(R)$ where R is semisimple, e.g. $R=k \oplus k . \mathbf{1}=R$ is not simple.
4. Y is a finite set with A-action. $\operatorname{Coh}_{A}(Y \times Y)-A$-equivariant vector bundles (or coherent sheaves) on $Y \times Y$. Convolution product: $F_{1} * F_{2}=p_{13 *}\left(p_{12}^{*}\left(F_{1}\right) \otimes p_{23}^{*}\left(F_{2}\right)\right)$ where $p_{i j}: Y \times Y \times Y \rightarrow Y \times Y$.
Exercise. What is the number of simple summands in $\mathbf{1} \in \operatorname{Coh}_{A}(Y \times Y)$?

Module categories

The categories $\operatorname{Coh}_{A}(Y \times Y)$ are not closed under the operation of taking full tensor subcategory. For example $\operatorname{Vec}_{B}^{\omega}$ with $\omega \neq 0$ is usually not of the form $\operatorname{Coh}_{A}(Y \times Y)$ but it can be found as a subcategory in a suitable $\operatorname{Coh}_{A}(Y \times Y)$.

Definition

Let \mathcal{C} be a tensor category and \mathcal{M} be a category. We say that \mathcal{M} is a module category over \mathcal{C} (or that \mathcal{C} acts on \mathcal{M}) if we have a tensor functor $\mathcal{C} \rightarrow \operatorname{End}(\mathcal{M})$. Equivalently, we have a bifunctor $\mathcal{C} \times \mathcal{M} \rightarrow \mathcal{M}$ with associativity constraint satisfying suitable axioms.

Example

Consider $\mathcal{C}=\operatorname{Vec}_{A}^{\omega}$. Let $B \subset A$ and $\psi \in Z^{2}\left(B, k^{\times}\right)$be such that $\partial \psi=\left.\omega\right|_{B}$. Then $R_{B}=\oplus_{b \in B} k_{b}$ acquires a structure of associative algebra in \mathcal{C}. Then $\mathcal{M}(B, \psi)=\left\{\right.$ right R_{B}-modules in $\left.\mathcal{C}\right\}$ is naturally a module category over \mathcal{C}. Simple objects of $\mathcal{M}(B, \psi) \leftrightarrow A / B$.

Dual categories

Convention: If \mathcal{C} is a multi-fusion category then any module category is assumed to be semisimple with finitely many simple objects.

Definition

Let \mathcal{M} be a module category over \mathcal{C}. Then $\mathcal{C}_{\mathcal{M}}^{*}:=\operatorname{End}_{\mathcal{C}}(\mathcal{M})$ is called dual category of \mathcal{C} with respect to \mathcal{M}.

Properties (Müger+Etingof, Nikshych, O)

- $\mathcal{C}_{\mathcal{M}}^{*}$ is multi-fusion category
- $\mathcal{C}_{\mathcal{M}}^{*}$ is fusion $\Leftrightarrow \mathcal{M}$ is indecomposable module category over \mathcal{C}
- $\left(\mathcal{C}_{\mathcal{M}}^{*}\right)_{\mathcal{M}}^{*} \simeq \mathcal{C}$
- $\mathcal{C} \sim \mathcal{C}_{\mathcal{M}}^{*}$ is an equivalence relation (2-Morita equivalence)
- $\mathcal{C} \xrightarrow{F} \mathcal{D}$ tensor functor and \mathcal{M} is module category over \mathcal{D}. Then we have $\mathcal{D}_{\mathcal{M}}^{*} \xrightarrow{F^{*}} \mathcal{C}_{\mathcal{M}}^{*}$
- let us say that F is injective if it is fully faithful and surjective if any object of \mathcal{D} is a subquotient of $F(X) . F$ injective $\Leftrightarrow F^{*}$ surjective

Convolution with twists

Example

$\mathcal{C}=\mathrm{Vec}_{A}$ and $\mathcal{M}=\oplus_{i} \mathcal{M}\left(B_{i}, 1\right)$.
Then $\mathcal{C}_{\mathcal{M}}^{*}=\operatorname{Coh}_{A}(Y \times Y)$ where $Y=\sqcup_{i} A / B_{i}($ so $\mathcal{M}=\operatorname{Coh}(Y))$.

Generalization

Let $\mathcal{C}=\operatorname{Vec}_{A}^{\omega}$ and $\mathcal{M}=\oplus_{i} \mathcal{M}\left(B_{i}, \psi_{i}\right)$. We consider $\mathcal{C}_{\mathcal{M}}^{*}$ as cohomologically twisted version of $\operatorname{Coh}_{A}(Y \times Y)$.
Notation: $\mathcal{C}_{\mathcal{M}}^{*}=\operatorname{Coh}_{A, \omega}(Y \times Y)$. Note that the information about ψ_{i} 's is implicitly contained in $Y ; Y$ is cohomologically twisted A-set.

Lemma

Let $\mathcal{C} \subset \operatorname{Coh}_{A}(Y \times Y)$ be a full multi-fusion subcategory such that $\mathcal{M}=\operatorname{Coh}(Y)$ is indecomposable over \mathcal{C}. Then there exists a surjective functor $F: \operatorname{Vec}_{A} \rightarrow \operatorname{Vec}_{\bar{A}}^{\omega}$ such that the action of Vec_{A} on \mathcal{M} factors through F and such that $\mathcal{C}=\operatorname{Coh}_{\bar{A}, \omega}(Y \times Y)=\left(\operatorname{Vec}_{\bar{A}}^{\omega}\right)_{\mathcal{M}}^{*} \subset\left(\operatorname{Vec}_{A}\right)_{\mathcal{M}}^{*}$.

Whittaker modules

Let $e \in \mathfrak{g}$ be a nilpotent element.
Jacobson-Morozov: $\exists h, f \in \mathfrak{g}$ s.t. $[h, e]=2 e,[h, f]=-2 f,[e, f]=h$.
$\mathfrak{g}=\bigoplus_{n \in \mathbb{Z}} \mathfrak{g}(n), \quad \mathfrak{g}(n)=\{x \in \mathfrak{g} \mid[h, x]=n x\}$.
E.g. $e \in \mathfrak{g}(2)$ and $f \in \mathfrak{g}(-2)$.
$x, y \mapsto(e,[x, y])$ non-degenerate skew-symmetric bilinear form on $\mathfrak{g}(-1)$.
Pick a lagrangian subspace $\ell \subset \mathfrak{g}(-1)$ and set $\mathfrak{m}=\mathfrak{m}_{\ell}=\ell \oplus \bigoplus_{i \leq-2} \mathfrak{g}(i)$.
Then $\xi(x)=(x, e)$ is a Lie algebra homomorphism $\mathfrak{m} \rightarrow \mathbb{C}$.
$\mathfrak{m}_{\xi}:=$ Lie subalgebra of $U(\mathfrak{g})$ spanned by $x-\xi(x), x \in \mathfrak{m}$.

Definition (Moeglin)

We say that \mathfrak{g}-module is Whittaker if the action of \mathfrak{m}_{ξ} on it is locally nilpotent. Wh - full subcategory of Whittaker \mathfrak{g}-modules.
$\widetilde{\text { Skr }}: \mathrm{Wh} \rightarrow$ Vect, $M \mapsto\left\{v \in M \mid \mathfrak{m}_{\xi} v=0\right\}$. $U(\mathfrak{g}, e)=\operatorname{End}(\widetilde{S k r})-\underline{\text { Premet's finite }} W$-algebra.

Remark: $U(\mathfrak{g}, e)$ does not depend on choice of $\ell \subset \mathfrak{g}(-1)$.

Action of the cell categories on Whittaker modules

Lemma

For $M \in \mathcal{H}$ and $N \in W h, M \otimes_{U(\mathfrak{g})} N \in W h$. Thus \mathcal{H} acts on Wh.

- Let $\chi \mathrm{Wh}$ be the full subcategory of $M \in \mathrm{~Wh}$ such that $Z(\mathfrak{g})$-action factors through a central character χ. Then $\mathcal{H}(\chi)$ acts on $\chi \mathrm{Wh}$. $\chi \mathrm{Wh}^{f}$ - full subcategory of $\chi \mathrm{Wh}$ consisting of semisimple M such that $\operatorname{Skr}(M)$ is finite dimensional (\simeq semisimple f.d. $U(\mathfrak{g}, e)$-modules).

Theorem (Losev)

Let $\mathbb{O}=G_{\mathbb{C}} e$. For $M \in \mathcal{H}(\chi)_{\leq \mathbb{C}}$ and $N \in \chi W h^{f}, M \otimes_{U(\mathfrak{g})} N \in \chi W h^{f}$. For $M \in \mathcal{H}(\chi)_{<\mathbb{O}}$ and $N \in{ }^{\chi} W h^{f}, M \otimes_{U(\mathfrak{g})} N=0$. Thus the cell category $\mathcal{H}(\chi)_{0}$ acts on $\chi W h^{f}$.

Let $Q=Z_{G_{\mathbb{C}}}(e, f, h)$. Then Q acts on $U(\mathfrak{g}, e)$ and on $\chi \mathrm{Wh}^{f}$.
Q-action on $\chi \mathrm{Wh}^{f}$ commutes with $\mathcal{H}(\chi)_{\mathbb{O}}$-action.
$Q^{0} \subset Q$ the unit component. The action of Q^{0} on $\chi \mathrm{Wh}^{f}$ is trivial.
Warning: this does not imply that $C(e):=Q / Q^{0}$ acts on $\chi \mathrm{Wh}^{f}$.

Irreducible finite dimensional $U(\mathfrak{g}, e)$-modules

Let us choose a finite subgroup $A \subset Q$ which surjects to Q / Q^{0}. Then $\chi \mathrm{Wh}^{f}$ is a module category over Vec_{A}.

Theorem (Losev, O)

The functor $\mathcal{H}(\chi)_{\mathbb{Q}} \rightarrow\left(\operatorname{Vec}_{A}\right)_{\chi \mathrm{Wh}^{f}}^{*}=\mathrm{End}_{\operatorname{Vec}_{A}}\left(\chi \mathrm{~Wh}^{f}\right)$ is fully faithful.

$\chi \mathrm{Wh}^{f}$ as module category over Vec_{A}

Y - set of isomorphism classes of irreducible f.d. $U(\mathfrak{g}, e)$-modules.
A acts on Y; moreover we have data of cohomologically twisted A-set.
Thus $\left(\operatorname{Vec}_{A}\right)_{\chi \mathrm{Wh}^{f}}^{*}=\operatorname{Coh}_{A}(Y \times Y)$ and $\mathcal{H}(\chi) \subset \operatorname{Coh}_{A}(Y \times Y)$

Corollary

There is a quotient \bar{A} of A and $\omega \in H^{3}\left(\bar{A}, \mathbb{C}^{\times}\right)$such that the action of Vec_{A} on $\chi^{\chi} h^{f}$ factors through tensor functor $\operatorname{Vec}_{A} \rightarrow \operatorname{Vec}_{\bar{A}}{ }_{\bar{\omega}}$ and the action on ${ }^{\chi} W^{f}$ induces tensor equivalence $\mathcal{H}(\chi)_{\mathbb{O}} \simeq \operatorname{Coh}_{\bar{A}, \omega}(Y \times Y)$.

Complements

- $\mathcal{H}(\chi)_{\mathbb{O}} \neq 0 \Leftrightarrow$ the nilpotent orbit \mathbb{O} is special in the sense of Lusztig.
- The quotient map $A \rightarrow \bar{A}$ factorizes through $A \subset Q \rightarrow Q / Q^{0}=C(e)$. \bar{A} is Lusztig's quotient of $C(e)$ (defined for any special nilpotent orbit). - Irr. summands of $\mathbf{1} \in \mathcal{H}(\chi)_{\mathbb{O}} \leftrightarrow$ primitive ideals $/$ with $V(U(\mathfrak{g}) / I)=\overline{\mathbb{O}}$. Irr. summands of $1 \in \operatorname{Coh}_{\bar{A}, \omega}(Y \times Y) \leftrightarrow \bar{A}$-orbits $(=Q$-orbits) in Y. Hence irreducible f.d. $U(\mathfrak{g}, e)_{\chi}$-modules which give rise to the same primitive ideal are Q-conjugated (Losev).
- Recall that irreducible objects of $\mathcal{H}(\chi) \leftrightarrow W$. It follows from Joseph's irreducibility theorem that $\operatorname{lrr}(\mathcal{H}(\chi))=\sqcup_{\mathbb{O}} \operatorname{lrr}\left(\mathcal{H}(\chi)_{\mathbb{O}}\right)$. Hence we have a partition of W indexed by special nilpotent orbits. This is known to coincide with partition into Kazhdan-Lusztig two sided cells. Each two sided cell is in turn partitioned into left cells and into right cells. This corresponds to partitions $\operatorname{Irr}(\mathcal{C})=\sqcup_{i} \mathbf{1}_{i} \otimes \operatorname{Irr}(\mathcal{C})=\sqcup_{i} \operatorname{lrr}(\mathcal{C}) \otimes \mathbf{1}_{i}$ where $\mathbf{1}=\oplus_{i} \mathbf{1}_{i}$ which holds for any multi-fusion category \mathcal{C}.
- $Y=\sqcup_{i} \bar{A} / B_{i}$ where $B_{i} \subset \bar{A}$ is well-defined up to conjugacy. These are Lusztig's subgroups attached to any left cell.
- $\oplus_{\mathbb{O}} K\left(\mathcal{H}(\chi)_{\mathbb{O}}\right)=: J$ is known to be asymptotic Hecke algebra (Lusztig). Lusztig's isomorphism: $J \otimes_{\mathbb{Z}} \mathbb{Q} \simeq \mathbb{Q}[W]$. Thus any \mathbb{Q}-module over $K\left(\mathcal{H}(\chi)_{\mathbb{O}}\right)$ gives rise to a W-module. For example $K\left(\mathcal{H}(\chi)_{\mathbb{O}} \otimes \mathbf{1}_{i}\right) \otimes \mathbb{Q}$ is constructible representation attached to a left cell. Also $K(\operatorname{Coh}(Y))$ is a module over $K\left(\operatorname{Coh}_{\bar{A}, \omega}(Y \times Y)\right)$
Dodd: there is $W \times C(e)$-equivariant embedding of $K(\operatorname{Coh}(Y)) \otimes \mathbb{Q}$ into Springer representation $H^{\text {top }}\left(\mathcal{B}_{e}\right)$.
- The 3-cocycle $\omega \in H^{3}\left(\bar{A}, \mathbb{C}^{\times}\right)$is almost always zero. $\omega \neq 0$ iff the corresponding two sided cell is exceptional. This happens only in types E_{7} and E_{8}; in this case $\bar{A}=\mathbb{Z} / 2 \mathbb{Z}$. Proof requires theory of character sheaves. - Assume that $\omega=0$. Then $\chi \mathrm{Wh}^{f}=\oplus_{i} \mathcal{M}\left(B_{i}, \psi_{i}\right)$. It can be shown that the cocycles ψ_{i} are all trivial.
- There is a conjectural description (Losev, O) of what happens in the case of χ which is no longer integral. The calculations suggest that in this case nontrivial 2-cocycles show up often.
- Further results: Losev gave formulas for dimensions of irreducible modules in $\chi \mathrm{Wh}^{f}$ and proved that they coincide with Goldie ranks of quotients by primitive ideas.

Derived convolution

F - algebraically closed field (possibly of positive characteristic)
X - algebraic variety over F
Sheaves on X form a category over field k :
(a) D-modules: $\operatorname{char}(F)=0, k=F$
(b) perverse constructible sheaves in classical topology: $F=\mathbb{C}$, any k
(c) perverse constructible ℓ-adic sheaves: $\ell \neq 0$ in $F, k=\overline{\mathbb{Q}}_{\ell}$
G - semisimple group over F of the same Dynkin type as \mathfrak{g} \mathcal{B} - flag variety of $G(\mathcal{B}=G / B$ where B is a Borel subgroup $)$
Simple G-equivariant sheaves on $\mathcal{B} \times \mathcal{B} \leftrightarrow G$-orbits on $\mathcal{B} \times \mathcal{B} \stackrel{\text { Bruhat }}{\longleftrightarrow} W$; $w \leftrightarrow I_{w}$
Convolution $*: F_{1} * F_{2}=p_{13 *}\left(p_{12}^{*}\left(F_{1}\right) \otimes p_{23}^{*}\left(F_{2}\right)\right)$ (use derived categories!) Decomposition Theorem (Beilinson, Bernstein, Deligne and Gabber) \Rightarrow $I_{u} * I_{v} \simeq \bigoplus_{w, i} I_{w}[i]^{n_{u, v}^{w}(i)}$
$C_{u} C_{v}=\sum_{w, i} n_{u, v}^{w}(i) t^{i} C_{w}$ - Hecke algebra (over $\mathbb{Z}\left[t, t^{-1}\right]$) with Kazhdan-Lusztig basis

Asymptotic Hecke algebra and truncated convolution

$a(w)=\max \left\{i \mid n_{u, v}^{w}(i) \neq 0\right.$ for some $\left.u, v\right\}$ - Lusztig's $a-f u n c t i o n$
$t_{u} t_{v}=\sum_{w} n_{u, v}^{w}(a(w)) t_{w}$ - Lusztig's asymptotic Hecke algebra J (over \mathbb{Z})
Lusztig: J is associative with unit; $J \otimes \mathbb{Q} \simeq \mathbb{Q}[W]$
$J=\oplus_{C} J_{C}$ - sum over two sided cells in $W ;\left.a\right|_{C}=$ const $=: a(C)$
Multi-fusion category \mathcal{J}_{C} : simple objects $I_{w}, w \in C$ truncated convolution: $I_{u} \bullet I_{v}:=\oplus_{w \in C} I_{w}^{\eta_{u, v}^{w}(a(C))}$

Beilinson-Bernstein: D-modules on $\mathcal{B} \simeq \mathfrak{g}$-modules with central character χ_{0}.
Corollary: G-equivariant D-modules on $\mathcal{B} \times \mathcal{B} \simeq \mathcal{H}\left(\chi_{0}\right)$.
Beilinson-Ginzburg: we can change equivalence above and make it tensor
Corollary (Bezrukavnikov, Finkelberg, O): D-module version of $\mathcal{J}_{C} \simeq \mathcal{H}_{\mathbb{O}}$.
Theorem (Bezrukavnikov, Finkelberg, O): $\mathcal{J}_{C} \simeq \operatorname{Coh}_{\bar{A}, \omega}(Y \times Y)$ for any F.

Character sheaves and Drinfeld center

G-equivariant sheaves on $\mathcal{B} \times \mathcal{B}=B \times B$-equivariant sheaves on G Such sheaves are $\Delta(B)$-equivariant $=A d(B)$-equivariant $\Gamma_{B}^{G}: \operatorname{Ad}(B)$-equivariant sheaves $\rightarrow \operatorname{Ad}(G)$-equivariant sheaves Simple constituents of $\Gamma_{B}^{G}\left(I_{w}\right)=$: (unipotent) character sheaves (Lusztig)
\mathcal{C} - tensor category \Rightarrow Drinfeld center $\mathcal{Z}(\mathcal{C})$:
Objects of $\mathcal{Z}(\mathcal{C})=$ pairs (X, ϕ) where $\phi: X \otimes ? \simeq ? \otimes X$
Müger, $\mathrm{O}: \mathcal{Z}\left(\mathcal{C}_{\mathcal{M}}^{*}\right) \simeq \mathcal{Z}(\mathcal{C})$ for a multi-fusion category \mathcal{C}
Example: $\mathcal{Z}\left(\operatorname{Coh}_{\bar{A}, \omega}(Y \times Y)\right) \simeq \mathcal{Z}\left(\operatorname{Vec}_{\bar{A}}^{\omega}\right)-($ twisted $)$ Drinfeld double

Observation: the functor Γ_{B}^{G} is formally similar to functor $I: \mathcal{C} \rightarrow \mathcal{Z}(\mathcal{C})$ Bezrukavnikov, Finkelberg, O: using D-modules (so $\operatorname{char}(F)=0$) Ben-Zvi, Nadler: in the setting of infinity categories Lusztig: using mixed sheaves (for any F)
Corollary: unipotent character sheaves $\leftrightarrow \sqcup_{\mathbb{O}} \operatorname{lrr}\left(\mathcal{Z}\left(\operatorname{Vec}_{\bar{A}}\right)\right)$.

Coxeter groups

W - finite crystallographic Coxeter group
What about more general Coxeter groups?
W - affine Weyl group
Lusztig: two sided cells in $W \leftrightarrow$ nilpotent orbit in \mathfrak{g}
Bezrukavnikov, $\mathrm{O}: \mathcal{J}_{C} \simeq \operatorname{Coh}_{Q}(Y \times Y)\left(\right.$ recall $\left.Q=Z_{G_{\mathbb{C}}}(e, f, h)\right)$ Bezrukavnikov, Mirković: interpretation of the set Y in terms of unrestricted representations of \mathfrak{g} in positive characteristic

W - infinite crystallographic group
Lusztig: category \mathcal{J}_{C} makes sense; however

- infinite number of simple objects
- 1 might be "infinite direct sum"

Soergel+Elias, Williamson+Lusztig: \mathcal{J}_{C} makes sense for any W !

- rigidity is not known; usually \mathcal{J}_{C} is not a convolution category

Thanks for listening!

