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Plan of the talk

1. Harish-Chandra (bi)modules.
2. Associated varieties and tensor product modulo “smaller size”.
3. Tensor categories and multi-fusion categories.
4. Actions of Harish-Chandra bimodules (Whittaker modules and finite
W−algebras).
5. Sheaves.
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Harish-Chandra modules

GR – real semi-simple Lie group, e.g. SL(n,R)
Harish-Chandra (1953): many questions about continuous complex
representations of GR can be reduced to pure algebra.

g = Lie(GR)⊗R C, U(g) – universal enveloping algebra
K ⊂ GR – maximal compact subgroup, e.g. SO(n,R) ⊂ SL(n,R)

Definition

A (g,K )−module (or Harish-Chandra module) is a space V with actions
of g and K such that
1. V is algebraic K−module, i.e. V is a union of finite dimensional
K−modules.
2. The actions are compatible: g-action is K−equivariant and the
differential of K−action agrees with Lie(K ) ⊂ g−action.
3. V is finitely generated U(g)−module.
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Complex groups and bimodules

GC – complex simply connected semi-simple Lie group, e.g. SL(n,C)
Let us consider GC as a real Lie group

g = Lie(GC); Lie(GC)⊗R C = g⊕ g

representation of Lie(GC)⊗R C ⇔ module over U(g⊕ g) = U(g)⊗C U(g)
x 7→ −x induces U(g) ' U(g)op, so U(g)⊗C U(g) ' U(g)⊗C U(g)op

Thus Lie(GC)⊗R C−representation is the same as U(g)−bimodule

We can choose K ⊂ GC such that Lie(K )⊗R C ⊂ Lie(GC)⊗R C is the
diagonal ∆g ⊂ g⊕ g, e.g. K = SU(n) ⊂ SL(n,C)
M – U(g)−bimodule; adjoint action: ad(x)m := xm −mx
U(g)−bimodule is algebraic if it is a union of finite dimensional g-modules
with respect to the adjoint action.

Example

U(g) is algebraic (use PBW filtration) and U(g)⊗C U(g) is not.
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Harish-Chandra bimodules

Definition

A Harish-Chandra bimodule over g is a finitely generated U(g)−bimodule
which is algebraic.

Lemma

If M and N are Harish-Chandra bimodules then so is M ⊗U(g) N.

• The tensor product ⊗U(g) is associative
• U(g) is the unit for this tensor product
Thus the category H of Harish-Chandra bimodules is a tensor category.

Remark. If M is a Harish-Chandra bimodule over g and N is
(g,K )−module then M ⊗U(g) N is also (g,K )−module
Thus the category H acts on the category of (g,K )−modules.
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Central characters and simple Harish-Chandra bimodules

Z (g) ⊂ U(g) center of the universal enveloping algebra
Z (g) acts on an irreducible g−module via central character χ : Z (g)→ C
χ1Hχ2 ⊂ H – full subcategory where the left Z (g)−action factors through
χ1 and the right Z (g)−action factors through χ2

Any irreducible Harish-Chandra bimodule is contained in a unique

χ1Hχ2 ⊂ H

χ1Hχ2 ⊗U(g) χ3Hχ4 ⊂ χ1Hχ4 and χ1Hχ2 ⊗U(g) χ3Hχ4 = 0 unless χ2 = χ3

H(χ) := χHχ is tensor subcategory of H
unit object: U(g)χ := U(g)/Ker (χ)U(g)

Convention: χ is integral regular, e.g. χ = χ0 trivial central character

Theorem (Bernstein-S. Gelfand, Enright, Joseph)

Irreducible bimodules in H(χ) ↔ elements of the Weyl group W .

Proof uses Bernstein-Gelfand-Gelfand category O.
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Associated varieties

M ∈ H, M0 ⊂ M finite dimensional subspace which generates M and
which is invariant under the adjoint action
U(g)0 ⊂ U(g)1 ⊂ · · · ⊂ U(g) PBW filtration
Mn = U(g)nM0 ⇒ filtration M0 ⊂ M1 ⊂ · · · ⊂ M

Associated graded

grM is a finitely generated module over grU(g) = S•(g)
Moreover, this module is equivariant with respect to GC−action

Let us identify g∗ = Spec(S•(g)) with g via the Killing form

Definition

The associated variety V (M) is the support of grM in g.

• V (M) = V (L) ∪ V (K ) for a s.e.s. 0→ L→ M → K → 0
• V (M ⊗U(g) N) ⊂ V (M) ∩ V (N)
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Filtration by nilpotent orbits

Nilpotent orbits

x ∈ g is nilpotent if ad(x) : g→ g is nilpotent
Example. x ∈ sl(n,C) is nilpotent ⇔ xn = 0
N ⊂ g is the nilpotent cone, i.e. the set of all nilpotent elements
Dynkin+Kostant: N consists of finitely many GC−orbits
Example. nilpotent orbits in sl(n,C)↔ partitions of n
For O ⊂ N , Ō is its closure; partial order: O′ ≤ O⇔ O′ ⊂ Ō

• for M ∈ χ1Hχ2 we have V (M) ⊂ N . Moreover,

Theorem (Borho-Brylinsky, Joseph)

For irreducible M ∈ H, V (M) is irreducible, i.e. V (M) = Ō.

H(χ)≤O – full subcategory of H(χ) consisting of M with V (M) ⊂ Ō
H(χ)<O – full subcategory of H(χ)≤O consisting of M with V (M) 6= Ō
Both H(χ)≤O and H(χ)<O are Serre subcategories
H(χ)≤O is closed under ⊗U(g); H(χ)<O is “ideal” with respect to ⊗U(g)
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Cell categories

Serre quotients

We can form H̃(χ)O = H(χ)≤O/H(χ)<O
Tensor products ⊗U(g) descends to ⊗ : H̃(χ)O × H̃(χ)O → H̃(χ)O

• it is not clear whether H̃(χ)O has a unit object
H(χ)O – full subcategory of H̃(χ)O consisting of semisimple objects

Theorem (Joseph, Bezrukavnikov-Finkelberg-O, Losev)

H(χ)O is closed under ⊗.

H(χ)O has a unit object: let Pr(χ)O be the (finite) set of primitive ideals
in U(g)χ with V (U(g)/I ) = Ō; then 1 = ⊕I∈Pr(χ)OU(g)/I

Theorem (Bezrukavnikov-Finkelberg-O, Losev-O)

H(χ)O is a multi-fusion category.

We will call H(χ)O cell category associated with O
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Tensor (=monoidal) categories

Definition (MacLane)

Tensor category: quadruple (C,⊗, a, 1) where C is a category,
⊗ : C × C → C is a bifunctor, aX ,Y ,Z : (X ⊗ Y )⊗ Z ' X ⊗ (Y ⊗ Z ) is an
associativity constraint, 1 is the unit object.
1. Pentagon axiom: the following diagram commutes for all
W ,X ,Y ,Z ∈ C:

((W ⊗ X )⊗ Y )⊗ Z

aW ,X,Y⊗idZttjjjjjjjjjjjjjjj

aW⊗X,Y ,Z **TTTTTTTTTTTTTTT

(W ⊗ (X ⊗ Y ))⊗ Z

aW ,X⊗Y ,Z

��

(W ⊗ X )⊗ (Y ⊗ Z )

aW ,X,Y⊗Z

��
W ⊗ ((X ⊗ Y )⊗ Z )

idW⊗aX,Y ,Z // W ⊗ (X ⊗ (Y ⊗ Z ))

2. Unit axiom: both functors 1⊗? and ?⊗ 1 are isomorphic to the
identity functor.
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Rigidity

For X ∈ C its right dual is X ∗ ∈ C together with evX : X ∗ ⊗ X → 1 and
coevX : 1→ X ⊗ X ∗ such that the compositions equal the identities:

X
coevX⊗idX−−−−−−−→ (X ⊗ X ∗)⊗ X

aX ,X∗,X−−−−→ X ⊗ (X ∗ ⊗ X )
idX⊗evX−−−−−→ X

X ∗
idX∗⊗coevX−−−−−−−−→ X ∗ ⊗ (X ⊗ X ∗)

a−1
X ,X∗,X−−−−→ (X ∗ ⊗ X )⊗ X ∗

evX⊗idX∗−−−−−−→ X ∗

Definition

C is rigid if any X ∈ C has right and left duals.

Example (s)

1. C = Bimod(R) bimodules over a ring R: tensor product is ⊗R , 1 = R.
M ∈ C has right dual ⇔ M is f.g. projective as left R−module.
2. C = End(A) functors from a category A to itself; tensor product is
composition, 1 = Id. F ∈ C has a dual ⇔ adjoint of F exists.
3. C = Mod(R) modules over a commutative ring R; e.g. vector spaces
over a field.
M ∈ C has right dual ⇔ M is f.g. projective ⇔ M has left dual.
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Example (continued)

4. (H. Sinh) Objects: elements of a group A; Hom(g , h) = ∅ if g 6= h,
Hom(g , g) = S where S is an abelian group. g ⊗ h = gh, α⊗ β = αβ for
g , h ∈ A, α, β ∈ S . Associativity constraint: ωg ,h,k ∈ S for any g , h, k ∈ A.
Pentagon axiom ⇔ ∂ω = 1, i.e. ω is a 3-cocycle on A with values in S .
Tensor structures are parameterized by H3(A, S).

5. R – algebra over k with trivial center. Consider the category of
invertible bimodules over R (morphisms are isomorphisms of bimodules).
This category is tensor equivalent to category from (4). A = Pic(R) group
of isomorphism classes of invertible bimodules (= non-commutattive
Picard group of R); S = k×. Associator ω ∈ H3(Pic(R), k×).

5a. Pic(R) ⊃ Out(R): Mφ = R, (a, b) · c = acφ(b).
Let 1 6= φ ∈ Z/2Z ⊂ Out(R), so φ2 = Ad(g).
Exercise. (i) φ(g) = ±g ; (ii) ω|Z/2Z 6= 0⇔ φ(g) = −g ; (iii) Let

φ(g) = −g . Then Mφ 6' M for any M ∈ Irr(R).

R = C〈g , x , y〉/(xy − yx − 1, g2 − 1, gx + xg , gy + yg),
φ(g) = −g , φ(x) = −y , φ(y) = x .
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Multi-fusion categories

Definition (Etingof, Nikshych, O)

Tensor category C over k is multi-fusion if it is rigid and semi-simple with
finitely many simple objects. C is fusion if in addition 1 is simple.

Example (char(k)=0)

0. Vec – finite dimensional vector spaces.
1. Rep(A) – f.d. representations of finite group A.
2. VecA – f.d. A−graded vector spaces. Thus simple objects are ka, a ∈ A
and ka ⊗ kb = kab. Generalization: VecωA – same as VecA but
ω ∈ H3(A, k×) is used as the associator.
3. Bimod(R) where R is semisimple, e.g. R = k ⊕ k . 1 = R is not simple.
4. Y is a finite set with A−action. CohA(Y × Y ) – A−equivariant vector
bundles (or coherent sheaves) on Y × Y . Convolution product:
F1 ∗ F2 = p13∗(p

∗
12(F1)⊗ p∗23(F2)) where pij : Y × Y × Y → Y × Y .

Exercise. What is the number of simple summands in 1 ∈ CohA(Y × Y )?
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Module categories

The categories CohA(Y × Y ) are not closed under the operation of taking
full tensor subcategory. For example VecωB with ω 6= 0 is usually not of the
form CohA(Y × Y ) but it can be found as a subcategory in a suitable
CohA(Y × Y ).

Definition

Let C be a tensor category and M be a category. We say that M is a
module category over C (or that C acts on M) if we have a tensor functor
C → End(M). Equivalently, we have a bifunctor C ×M→M with
associativity constraint satisfying suitable axioms.

Example

Consider C = VecωA. Let B ⊂ A and ψ ∈ Z 2(B, k×) be such that
∂ψ = ω|B . Then RB = ⊕b∈Bkb acquires a structure of associative algebra
in C. Then M(B, ψ) = { right RB−modules in C} is naturally a module
category over C. Simple objects of M(B, ψ)↔ A/B.
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Dual categories

Convention: If C is a multi-fusion category then any module category is
assumed to be semisimple with finitely many simple objects.

Definition

Let M be a module category over C. Then C∗M := EndC(M) is called dual
category of C with respect to M.

Properties (Müger+Etingof, Nikshych, O)

• C∗M is multi-fusion category
• C∗M is fusion ⇔ M is indecomposable module category over C
• (C∗M)∗M ' C
• C ∼ C∗M is an equivalence relation (2-Morita equivalence)

• C F−→ D tensor functor and M is module category over D. Then we have

D∗M
F∗−→ C∗M

• let us say that F is injective if it is fully faithful and surjective if any
object of D is a subquotient of F (X ). F injective ⇔ F ∗ surjective
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Convolution with twists

Example

C = VecA and M = ⊕iM(Bi , 1).
Then C∗M = CohA(Y × Y ) where Y = tiA/Bi (so M = Coh(Y )).

Generalization

Let C = VecωA and M = ⊕iM(Bi , ψi ). We consider C∗M as
cohomologically twisted version of CohA(Y × Y ).
Notation: C∗M = CohA,ω(Y ×Y ). Note that the information about ψi ’s is
implicitly contained in Y ; Y is cohomologically twisted A−set.

Lemma

Let C ⊂ CohA(Y × Y ) be a full multi-fusion subcategory such that
M = Coh(Y ) is indecomposable over C. Then there exists a surjective
functor F : VecA → Vecω

Ā
such that the action of VecA on M factors

through F and such that C = CohĀ,ω(Y × Y ) = (Vecω
Ā

)∗M ⊂ (VecA)∗M.
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Whittaker modules

Let e ∈ g be a nilpotent element.
Jacobson-Morozov: ∃h, f ∈ g s.t. [h, e] = 2e, [h, f ] = −2f , [e, f ] = h.
g =

⊕
n∈Z g(n), g(n) = {x ∈ g|[h, x ] = nx}.

E.g. e ∈ g(2) and f ∈ g(−2).
x , y 7→ (e, [x , y ]) non-degenerate skew-symmetric bilinear form on g(−1).
Pick a lagrangian subspace ` ⊂ g(−1) and set m = m` = `⊕

⊕
i≤−2 g(i).

Then ξ(x) = (x , e) is a Lie algebra homomorphism m→ C.
mξ := Lie subalgebra of U(g) spanned by x − ξ(x), x ∈ m.

Definition (Moeglin)

We say that g−module is Whittaker if the action of mξ on it is locally
nilpotent. Wh – full subcategory of Whittaker g−modules.

S̃kr : Wh→ Vect, M 7→ {v ∈ M|mξv = 0}.
U(g, e) = End(S̃kr) – Premet’s finite W−algebra.
Skryabin (also Gan, Ginzburg and Losev): Skr : Wh

∼−→ Mod(U(g, e))
Remark: U(g, e) does not depend on choice of ` ⊂ g(−1).
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Action of the cell categories on Whittaker modules

Lemma

For M ∈ H and N ∈Wh, M ⊗U(g) N ∈Wh. Thus H acts on Wh.

• Let χWh be the full subcategory of M ∈Wh such that Z (g)−action
factors through a central character χ. Then H(χ) acts on χWh.
χWhf – full subcategory of χWh consisting of semisimple M such that
Skr(M) is finite dimensional (' semisimple f.d. U(g, e)−modules).

Theorem (Losev)

Let O = GCe. For M ∈ H(χ)≤O and N ∈ χWhf , M ⊗U(g) N ∈ χWhf .

For M ∈ H(χ)<O and N ∈ χWhf , M ⊗U(g) N = 0. Thus the cell category

H(χ)O acts on χWhf .

Let Q = ZGC(e, f , h). Then Q acts on U(g, e) and on χWhf .
Q−action on χWhf commutes with H(χ)O−action.
Q0 ⊂ Q the unit component. The action of Q0 on χWhf is trivial.
Warning: this does not imply that C (e) := Q/Q0 acts on χWhf .
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Irreducible finite dimensional U(g, e)-modules

Let us choose a finite subgroup A ⊂ Q which surjects to Q/Q0.
Then χWhf is a module category over VecA.

Theorem (Losev,O)

The functor H(χ)O → (VecA)∗χWhf = EndVecA
(χWhf ) is fully faithful.

χWhf as module category over VecA

Y – set of isomorphism classes of irreducible f.d. U(g, e)−modules.
A acts on Y ; moreover we have data of cohomologically twisted A−set.
Thus (VecA)∗χWhf = CohA(Y × Y ) and H(χ)O ⊂ CohA(Y × Y )

Corollary

There is a quotient Ā of A and ω ∈ H3(Ā,C×) such that the action of
VecA on χWhf factors through tensor functor VecA → Vecω

Ā
and the

action on χWhf induces tensor equivalence H(χ)O ' CohĀ,ω(Y × Y ).
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Complements

• H(χ)O 6= 0⇔ the nilpotent orbit O is special in the sense of Lusztig.
• The quotient map A→ Ā factorizes through A ⊂ Q → Q/Q0 = C (e).
Ā is Lusztig’s quotient of C (e) (defined for any special nilpotent orbit).
• Irr. summands of 1 ∈ H(χ)O ↔ primitive ideals I with V (U(g)/I ) = Ō.
Irr. summands of 1 ∈ CohĀ,ω(Y × Y )↔ Ā−orbits (=Q−orbits) in Y .
Hence irreducible f.d. U(g, e)χ−modules which give rise to the same
primitive ideal are Q−conjugated (Losev).
• Recall that irreducible objects of H(χ)↔W . It follows from Joseph’s
irreducibility theorem that Irr(H(χ)) = tOIrr(H(χ)O). Hence we have a
partition of W indexed by special nilpotent orbits. This is known to
coincide with partition into Kazhdan-Lusztig two sided cells. Each two
sided cell is in turn partitioned into left cells and into right cells. This
corresponds to partitions Irr(C) = ti1i ⊗ Irr(C) = ti Irr(C)⊗ 1i where
1 = ⊕i1i which holds for any multi-fusion category C.
• Y = ti Ā/Bi where Bi ⊂ Ā is well-defined up to conjugacy. These are
Lusztig’s subgroups attached to any left cell.
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• ⊕OK (H(χ)O) =: J is known to be asymptotic Hecke algebra ( Lusztig).
Lusztig’s isomorphism: J ⊗Z Q ' Q[W ]. Thus any Q−module over
K (H(χ)O) gives rise to a W−module. For example K (H(χ)O ⊗ 1i )⊗Q is
constructible representation attached to a left cell.
Also K (Coh(Y )) is a module over K (CohĀ,ω(Y × Y ))
Dodd: there is W × C (e)−equivariant embedding of K (Coh(Y ))⊗Q into
Springer representation Htop(Be).
• The 3-cocycle ω ∈ H3(Ā,C×) is almost always zero. ω 6= 0 iff the
corresponding two sided cell is exceptional. This happens only in types E7

and E8; in this case Ā = Z/2Z. Proof requires theory of character sheaves.
• Assume that ω = 0. Then χWhf = ⊕iM(Bi , ψi ). It can be shown that
the cocycles ψi are all trivial.
• There is a conjectural description (Losev,O) of what happens in the case
of χ which is no longer integral. The calculations suggest that in this case
nontrivial 2-cocycles show up often.
• Further results: Losev gave formulas for dimensions of irreducible
modules in χWhf and proved that they coincide with Goldie ranks of
quotients by primitive ideas.
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Derived convolution

F – algebraically closed field (possibly of positive characteristic)
X – algebraic variety over F
Sheaves on X form a category over field k:
(a) D−modules: char(F )=0, k = F
(b) perverse constructible sheaves in classical topology: F = C, any k
(c) perverse constructible `−adic sheaves: ` 6= 0 in F , k = Q̄`

G – semisimple group over F of the same Dynkin type as g

B – flag variety of G (B = G/B where B is a Borel subgroup)

Simple G−equivariant sheaves on B × B ↔ G−orbits on B × B Bruhat←→ W ;
w ↔ Iw
Convolution ∗: F1 ∗ F2 = p13∗(p

∗
12(F1)⊗ p∗23(F2)) (use derived categories!)

Decomposition Theorem (Beilinson, Bernstein, Deligne and Gabber) ⇒
Iu ∗ Iv '

⊕
w ,i Iw [i ]n

w
u,v (i)

CuCv =
∑

w ,i n
w
u,v (i)t iCw – Hecke algebra (over Z[t, t−1]) with

Kazhdan-Lusztig basis
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Asymptotic Hecke algebra and truncated convolution

a(w) = max{i |nw
u,v (i) 6= 0 for some u, v} – Lusztig’s a−function

tutv =
∑

w nw
u,v (a(w))tw – Lusztig’s asymptotic Hecke algebra J (over Z)

Lusztig: J is associative with unit; J ⊗Q ' Q[W ]
J = ⊕CJC – sum over two sided cells in W ; a|C = const =: a(C )

Multi-fusion category JC : simple objects Iw ,w ∈ C

truncated convolution: Iu • Iv := ⊕w∈C I
nw

u,v (a(C))
w

Beilinson-Bernstein: D−modules on B ' g−modules with central
character χ0.
Corollary: G−equivariant D−modules on B × B ' H(χ0).
Beilinson-Ginzburg: we can change equivalence above and make it tensor
Corollary (Bezrukavnikov, Finkelberg, O): D−module version of
JC ' HO.
Theorem (Bezrukavnikov, Finkelberg, O): JC ' CohĀ,ω(Y × Y ) for any
F .

Victor Ostrik (U of O) Fusion of Harish-Chandra bimodules August 19 23 / 26



Character sheaves and Drinfeld center

G−equivariant sheaves on B × B = B × B−equivariant sheaves on G
Such sheaves are ∆(B)−equivariant = Ad(B)−equivariant
ΓG

B : Ad(B)−equivariant sheaves → Ad(G )−equivariant sheaves
Simple constituents of ΓG

B (Iw ) =: (unipotent) character sheaves (Lusztig)

C – tensor category ⇒ Drinfeld center Z(C):
Objects of Z(C) = pairs (X , φ) where φ : X⊗? '?⊗ X
Müger, O: Z(C∗M) ' Z(C) for a multi-fusion category C
Example: Z(CohĀ,ω(Y × Y )) ' Z(Vecω

Ā
) – (twisted) Drinfeld double

Observation: the functor ΓG
B is formally similar to functor I : C → Z(C)

Bezrukavnikov, Finkelberg, O: using D−modules (so char(F ) = 0)
Ben-Zvi, Nadler: in the setting of infinity categories
Lusztig: using mixed sheaves (for any F )
Corollary: unipotent character sheaves ↔ tOIrr(Z(VecĀ)).
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Coxeter groups

W – finite crystallographic Coxeter group
What about more general Coxeter groups?

W – affine Weyl group
Lusztig: two sided cells in W ↔ nilpotent orbit in g

Bezrukavnikov, O: JC ' CohQ(Y × Y ) (recall Q = ZGC(e, f , h))
Bezrukavnikov, Mirković: interpretation of the set Y in terms of
unrestricted representations of g in positive characteristic

W – infinite crystallographic group
Lusztig: category JC makes sense; however
• infinite number of simple objects
• 1 might be “infinite direct sum”

Soergel+Elias, Williamson+Lusztig: JC makes sense for any W !
• rigidity is not known; usually JC is not a convolution category
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Thanks for listening!
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